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Abstract

Continual learning refers to a dynamical framework in which
a model receives a stream of non-stationary data over time and
must adapt to new data while preserving previously acquired
knowledge. Unluckily, neural networks fail to meet these two
desiderata, incurring the so-called catastrophic forgetting phe-
nomenon. Whereas a vast array of strategies have been pro-
posed to attenuate forgetting in the computer vision domain,
for speech-related tasks, on the other hand, there is a dearth of
works. In this paper, we consider the joint use of rehearsal and
knowledge distillation (KD) approaches for spoken language
understanding under a class-incremental learning scenario. We
report on multiple KD combinations at different levels in the
network, showing that combining feature-level and predictions-
level KDs leads to the best results. Finally, we provide an ab-
lation study on the effect of the size of the rehearsal memory
that corroborates the efficacy of our approach for low-resource
devices.
Index Terms: Continual Learning, Spoken Language Under-
standing, Experience Rehearsal, Knowledge Distillation

1. Introduction
Spoken Language Understanding (SLU) plays a crucial role in
countless speech-related applications, such as virtual assistants
and home devices [1]. Its main purpose is to extract relevant in-
formation from a spoken utterance. Intent classification is a core
problem of every SLU system and involves the identification of
the correct intent associated with a specific utterance. Although
several works have targeted this problem with exceptional re-
sults [2, 3], it still misses an in-depth study under a continual
learning (CL) setting, in which the entire data is not available to
the system at once, but it is spread over a sequence of tasks.

CL is a machine learning field that studies how to miti-
gate catastrophic forgetting, defined as the proclivity of neu-
ral networks to fit the new data distribution at the expense of
the knowledge that has been already learned [4]. This setting
is in line with practical applications that require a model to be
robust to unforeseen drifts in the input data distribution. CL ap-
proaches proposed in the literature can be divided into three
categories: a) methods based on a regularisation loss [5, 6]
that prevents the parameters from changing widely, b) rehearsal
methods based on the replay of historical data [7, 8] (either
training samples [9] or model weights [10]), and c) methods
that modify the architecture of the model [11].

In this work, we consider the problem of intent classifi-
cation applied to a class-incremental learning (CIL) scenario,
whereby the intents are distributed into several tasks, and the
model has to correctly learn them sequentially. The main hin-
drance of such a scenario is twofold: 1) the model has access to
only the intents from the current task, and 2) the task identifier

is unknown to the model, yet it must be predicted along with the
intents.

Many works [9, 8, 12] have proven that an extremely effec-
tive approach to reducing catastrophic forgetting relies on the
usage of a set of rehearsal data, chosen at the end of each task
and stored in a rehearsal memory, that contribute to the loss
function together with those in the actual task. The additional
use of a distillation loss [5], which alone falls through in a CIL
scenario, is not always beneficial to the model, as pointed out
in [13, 14], who contend that it can even lead to a deterioration
in the performance. Also, their mutual interaction is scarcely
investigated for speech as well as for other modalities (e.g., vi-
sion).

For this reason, we investigate the interrelationship between
applying the knowledge distillation (KD) [15] at different levels
in the model, namely in the predictions and in the feature space,
and the rehearsal approach. We demonstrate that the joint use of
predictions-level and feature-level KDs leads to the best results.

Our contributions to the CL problem are the following: i)
we define a CIL scenario for SLU over the Fluent Speech Com-
mand dataset [2]; ii) we provide a thorough analysis of the com-
bination of rehearsal and KDs for 4 CL strategies, and we prove
its efficacy in our scenario; iii) we point out that a careful de-
sign of the KD weights is crucial for obtaining optimal results,
and we foster the CL community to place more emphasis on
this aspect; iv) we provide an ablation study about the size of
the rehearsal buffer, and we conclude that our approach attains
larger gains for smaller sizes, thus making it appealing for low-
resource devices.

2. Related work
CL strategies can be categorized into three main groups [16,
17]: regularization, rehearsal, and architectural approaches.

Regularization approaches mitigate catastrophic forgetting
by supplying the standard cross-entropy (CE) loss with regu-
larization terms to avoid abrupt changes in the model weights.
Learning without forgetting (LwF) [5] employs a weighted
knowledge distillation loss that forces the outputs of the model
to be similar to those obtained by the model trained in the pre-
vious task. The work by [6] resorts to the Fisher information
matrix to estimate the importance of the model weights and pro-
tect them afterward to prevent forgetting, while [18] advance a
spatial-based distillation loss computed for every intermediate
layer of the model.

Rehearsal or Experience Replay methods keep in memory
some of the past data to mitigate forgetting. A key aspect lies in
the selection strategy for retaining past data. The simplest, but
relatively effective, approach randomly chooses some samples
from the last task [19]. ICaRL [8] fosters the samples whose
features are the closest to their moving center of gravity. Gradi-
ent Episodic Memory (GEM [9]) attenuates forgetting by pro-
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jecting the gradient update along a direction that does not inter-
fere with the previously acquired knowledge. [20] select the re-
hearsal samples by maximizing the mutual information between
the predictions and the posterior of the model’s parameters us-
ing Monte Carlo dropout.

Finally, Architectural methods apply modifications to the
network architecture, such as adding layers or freezing specific
parts of the model, to handle new incremental tasks. An exam-
ple is [11], where, at each new task, a novel feature extractor is
instantiated, while the previous one is frozen, and pruning is ap-
plied to shrink the model. An alternative that has been in vogue
recently relies on prompt learning, namely a small portion of
new parameters are appended to all data of a new task and they
are learned, whilst the network is kept frozen. [21] apply this
paradigm for class-incremental event detection. These methods,
although successful, do not scale to the number of seen tasks.

Although the literature is mainly related to computer vision,
CL has also been investigated in the speech domain. For exam-
ple, [22] address a KWS incremental-learning task, creating a
sub-network for each new task and keeping in memory the pro-
cessed features from the past tasks. It is also worth noting the
use of CL in Automatic Speech Recognition (ASR). The work
in [23] proposes an online GEM method for model updates to-
gether with a selective sampling strategy.

For SLU, we find few works that only consider a domain-
incremental CL scenario: [24] propose a progressive architec-
ture for the slot-filling task that expands the network for each
new task; [25] consider the combination of rehearsal and reg-
ularization techniques for natural language generation. Never-
theless, to the best of our knowledge, we are the first to explore
SLU in a CIL scenario, in particular, we study the adoption of
the KD at features and predictions levels, and applied to only
the rehearsal data or the rehearsal data plus the current data.

3. Proposed approach
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Figure 1: Complete overview of our proposed approach.

In a CL setting, a classification model, which comprises
a multilayered feature extractor ENCθ and a classifier FCϕ (pa-
rameterized by θ and ϕ, respectively), is trained over a sequence
of T distinct training phases, that is D = {D0, . . . ,DT−1}.
The dataset Dt related to the tth training phase is interpreted as
a task defined by audio signals Xt and associated class labels
Yt, i.e. Dt = (Xt,Yt). In CIL scenarios all task label sets are
mutually exclusive, i.e. Yi ∩ Yj = Ø, i ̸= j.

At the end of task t − 1 we select a set of data Rt−1 ⊂
Dt−1 for the rehearsal memory. Then, all the rehearsal data,
from task 0 to task t− 1, Rt−1

0 = {R0, . . . ,Rt−1} are joined
with the training data Dt in order to train the model for the tth

task. A naive CL strategy optimizes the CE loss computed over
Dt ∪Rt−1

0 :

Lt
CE = −

∑

(x,y)∈Dt∪Rt−1
0

log(p[y|x; (θt, ϕt)]), (1)

where p[y|x; (θt, ϕt)] is the output probability distribution of
the model given the parameters θt and ϕt at task t.

A common approach is to further regularize the model
adaptation through a KD loss. In this paper, we experiment
with two different distillation terms in combination with the CE
loss. The first one is the Kullback Leibler Divergence (KLD)
between the output probability distribution at task t and the dis-
tribution predicted with the model trained at task t− 1, i.e.:

Lt
KLD =

∑

(x,y)∈It

p[y|x; (θt−1, ϕt−1)] log(p[y|x; (θt, ϕt)]).

(2)
In the equation above It represents the training set for task t,
consisting of only the rehearsal data (It = Rt−1

0 ), or the union
of the rehearsal and current data of task t (It = Dt ∪ Rt−1

0 ).
The second regularization term is given by the mean squared
error (MSE) loss between the output of the model encoder at
tasks t− 1 and t, i.e.:

Lt
MSE =

∑

x∈It

∥ENCθt−1(x)− ENCθt(x)∥2. (3)

Also in this case we experiment with both It = Rt−1
0 and It =

Dt∪Rt−1
0 . The total loss to optimize in each task t is therefore a

linear combination of the CE loss in eq. 1 and the regularization
losses in eqs. 2 and 3:

Lt
TOT = λCELt

CE + λKDLt
MSE + λKDLt

KLD. (4)

Figure 1 shows a schematic illustration of the proposed CL ap-
proach.

4. Experiments
4.1. CIL definition for FSC and rehearsal memory

We evaluate our proposed approach on the Fluent Speech Com-
mands (FSC) dataset [2]. FSC includes 30,043 English utter-
ances, recorded at 16 kHz. The dataset provides 248 differ-
ent utterances mapped in 31 different intents. There is only
one intent per utterance. To give an example, the intent in-
crease heat kitchen is associated with the utterance “turn up the
temperature in the kitchen”. We split the dataset into train, vali-
dation, and test sets with a ratio of 80:10:10 as proposed in [2].

To define the CIL scenario, we partition the FSC dataset
into 10 disjoint tasks, where the first task comprises 4 unique
intents and the subsequent 9 tasks contain 3 intents. The order
of the intents is random, and we have not observed significant
change by considering different random orders.

Concerning the rehearsal memory, its entire capacity is not
exploited since the beginning, but each class has a pre-allocated
space that is used when that class is seen for the first time. In this
way, we avoid a possible imbalance among the classes between
the first and the last tasks.
4.2. Model architecture

The deep feature extractor we employ in the experiments is
depicted in Figure 2. It is inspired by the temporal convolu-
tional network (TCN) used in the separation block of Conv-
Tas-Net [26], a recently proposed model for speech separation.
We observe that the KD strategies we propose are architecture-
agnostic, so they do not rely on the underlying architecture. It
would be possible to substitute the TCN with any other deep
architecture (e.g., transformer-based encoder).
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Figure 2: The block diagram of the TCN encoder performing
feature extraction and the corresponding Conv1D block struc-
ture.

Table 1: List of the hyperparameters of the TCN.

Hyperparameter Value
Input channels 40
Hidden channels 128
Output channels 64
# 1-D conv blocks 5
# Repetitions 2
Kernel size for the depthwise conv 3

The network takes as input 40 Mel-spaced log filter-banks,
computed using a sliding window of length 25 ms, with 10 ms
stride. Then, it applies a global layer normalization (gLN) and
a bottleneck layer (1x1 conv block) that maps the input fea-
tures into 64 channels. The input layer is followed by 2 repeti-
tions of 5 consecutive 1-D dilated convolutional residual blocks.
Each residual block is formed by two symmetrical pipelines sur-
rounding a depth-wise separable convolutional layer that maps
the 64 bottleneck features into 128 channels. A residual branch
connects the original input to the output. Mean pooling is ap-
plied to the output of the last block, followed by gLN and a lin-
ear layer. A softmax activation layer gives the final class scores.

We train the TCN model for 50 epochs per task with Adam
optimizer, with a learning rate equal to 5e−4. The CIL scenario
is implemented with the Continuum library [27], and the rest
of the code is based on PyTorch. For each experiment, we use
one Quadro RTX A5000. One experiment with memory size
= 930 and with the iCaRL method requires around 1.15 hours,
whereas the GEM method around 6 hours. Table 1 reports the
whole set of hyperparameters. The code is available online1.

4.3. Distillation weights

The selection of the KD weights deserves special attention.
A common choice for the λKD weight is n

n+m
, where n is

the number of old (seen) classes and m is the number of new
classes [28, 29]. This choice was originally proposed for works
that used only KD as CL strategy, and it gives more and more
importance to λKD over time because the past model retains
the knowledge from more and more past classes. The sub-
sequent works that considered KD and rehearsal together, ad-
hered to this choice. Nonetheless, we speculate that relying
on this option gives worse results. When we use both KD
and rehearsal approaches applied to rehearsal and current data
(It = Dt ∪Rt−1

0 ), the importance of the past model is damped
by the fact that the current model sees the rehearsal data, so we

1https://github.com/umbertocappellazzo/CL SLU

still would like λKD to increase, but at a slower pace, and this
can be accomplished by using a log function. When we use the
KD applied only to the rehearsal data (It = Rt−1

0 ), we give
it a weight proportional to the fraction of rehearsal data in the
mini-batch. Since this number is too small during the first tasks,
we apply the square root operation to enlarge it. Ultimately, we
set λKD as follows:

λKD =

{
log(1 + n

n+m
) if It = Dt ∪Rt−1

0√
brehe
ball

if It = Rt−1
0

(5)

where brehe counts the number of rehearsal data in the current
mini-batch, and ball is the current mini-batch size. We found
empirically that using λKD as defined in eq. 5 brought about
a 1% to 2% improvement in the accuracy. This study suggests
that a careful choice of the KD weights is essential.

Eq. 4 changes depending on the considered experiment.
When we do not apply any KD loss, the weights boil down to
λKD = 0, λCE = 1 (in practice, only the CE loss is used).
When we use the KD in the feature space only, the KLD loss is
not present, λKD follows eq. 5, and λCE = 1 - λKD . If we use
the KD in the predictions space, the same as before applies with
the KLD loss and the MSE loss inverted. Lastly, when both
the KLD loss and the MSE loss are employed, their coefficient
λKD follows eq. 5, and λCE is set to 1.

4.4. Results

Table 2 reports the intent classification accuracy for different
KD strategies in combination with 4 CL approaches, i.e. a
rehearsal approach with 3 different sample selection strategies
(random, iCaRL [8], and “closest to mean”, where the sam-
ples which are closest to their class mean in the feature space
are chosen), and GEM [9]. The rehearsal memory size is 930
(around 4% of the dataset size). We consider 2 random class or-
ders, and for each, we run 4 experiments and take the average.
We use 2 metrics to test the efficacy of each strategy: the aver-
age accuracy (avg acc), which is defined as the average of the
accuracies after each task, and the accuracy after the last task
(last acc). For better stability, the accuracy of each task is the
average of the last 5 epochs.

In the upper part of Table 2 we include the results for: i)
the offline upper bound (i.e., no incremental learning), which
is in line with the current state-of-the-art methods on the
FSC dataset; ii) the results obtained with the naive fine-tuning
method, and iii) the results we achieve applying solely the KD
in the predictions space without rehearsal.

The lower part of the table shows the accuracies when re-
hearsal data are employed. The rows show the accuracies for
the cases in which the distillation is performed at the feature
level, predictions level, and both levels, respectively. For each
configuration, the table also reports the performance when dis-
tillation is applied to either rehearsal data alone (denoted with
R in the table) or to the union of rehearsal and actual task data
(denoted with D ∪R).

When we endow the model with the KD in the feature
space, the reliance on only the rehearsal data improves both the
average accuracy and the last accuracy. On the contrary, the
joint use of D ∪ R deteriorates the performance. This can be
explained by observing that if we use D ∪ R, we are forcing
the current model, θt, to produce feature representations that
are similar to the ones obtained with the previous model, θt−1.
Whereas this is desirable for the rehearsal data (the previous
model has been trained on them), this is not the case for the
new data, since we want our model to learn in the actual task
new clusters which should be far apart from the past clusters.
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Table 2: Intent classification accuracy with 930 samples in the rehearsal memory, using different distillation strategies. The highest
accuracies are reported in bold while we use italics for the best KD of each CL method.

Baselines last acc avg acc
Offline 0.985 -
Finetuning 0.073 0.267
Pred. KD (no rehe) 0.080 0.272
Feat. KD Pred. KD Random Closest to mean iCaRL [8] GEM [9]
data data last acc avg acc last acc avg acc last acc avg acc last acc avg acc
- - 0.660 0.720 0.650 0.694 0.682 0.740 0.573 0.710

Feature space KD
R - 0.737 0.779 0.728 0.740 0.789 0.802 0.773 0.789
D ∪R - 0.594 0.643 0.562 0.609 0.600 0.643 0.710 0.714

Predictions space KD
- R 0.676 0.736 0.632 0.690 0.662 0.726 0.624 0.735
- D ∪R 0.757 0.764 0.690 0.717 0.780 0.795 0.600 0.710

Double KDs
R R 0.752 0.770 0.728 0.739 0.788 0.787 0.764 0.799
R D ∪R 0.771 0.796 0.729 0.740 0.811 0.812 0.751 0.796

Considering the KD in the predictions space, instead, we
witness a trend inversion. The use of D ∪ R achieves better
results than just using the data in the memory, albeit the differ-
ence is not as pronounced as for the feature-space KD. This can
be explained by the fact that since in the predictions space we
deal with probability distributions, the new and teacher models
produce values for both new and past classes, thus it is more
convenient to apply the KD to D ∪ R (e.g., D and R act as
negative samples for the past and new classifiers, respectively).
It is also worth noting that in almost all cases the feature-level
KD attains slightly better results than its predictions counter-
part. We point out that GEM achieves slightly better results
when only rehearsal data are considered, and this may be be-
cause it already employs a regularization on the gradients using
only the rehearsal data.

Figure 3: Trend of the avg accuracy for 4 different combinations
of the iCaRL method. Each task has 50 steps (i.e., epochs).

The last two rows of Table 2 consider the combination of
feature-level and predictions-level KDs (the configurations with
D ∪ R in the feature space are not considered since we have
shown they are harmful to the model). The use of the features-
space KD applied to R in conjunction with the predictions-
space KD applied to D ∪ R gives the best results (0.811 and
0.812 for the last acc and avg acc by iCaRL, respectively), prov-
ing the effectiveness of integrating both KDs. Fig. 3 depicts the
trend of 4 different configurations for the iCaRL strategy. The
concurrent use of both KDs (red curve) leads to the best over-
all performance, even though the last task accuracy (last acc) is
pretty similar to the methods employing single KDs.

Finally, Figure 4 shows the average accuracies achieved by
different KDs approaches when using smaller rehearsal mem-
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Figure 4: Average accuracy for different values of the memory
size for the iCaRL strategy.

ory sizes. We can note the consistency of the performance
trends as the memory size changes. In particular, the relative
gain in accuracy provided by the KDs is larger when a rehearsal
memory with a smaller capacity is used. For instance, the rel-
ative gain is around 7.2 points when the memory size is 930,
whereas for memory size = 231 the gain is 9.9. This clearly
shows the effectiveness of our approach also for limited-budget
SLU systems.

5. Conclusions
This paper describes an approach for class-incremental contin-
ual learning in a SLU domain. We show that the KD on the re-
hearsal data is effective if applied to the encoded features. Fur-
thermore, the feature-level MSE loss, when added to the usual
predictions-level KD loss, brings additional performance im-
provements. The efficacy of the approach is particularly evident
when the rehearsal memory size is small, making it suitable for
low-resources devices. One limitation is the dataset that, al-
though large in terms of size, lacks lexical richness and variety.
Thus, future work will extend the proposed approach to a more
recent and complex end-to-end SLU dataset, the Spoken Lan-
guage Understanding Resource Package (SLURP) [30], which
also features the prediction of multiple entities inside a spoken
sentence (e.g., slot filling).
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