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Abstract
In this paper, we study the use of goodness of pronunciation
(GOP) on child speech. We first compare the distributions of
GOP scores on several open datasets representing various di-
mensions of speech variability. We show that the GOP distribu-
tion over CMU Kids, corresponding to young age, has larger
spread than those on datasets representing other dimensions,
i.e., accent, dialect, spontaneity and environmental conditions.
We hypothesize that the increased variability of pronunciation
in young age may impair the use of traditional mispronuncia-
tion detection methods for children. To support this hypothesis,
we perform simulated mispronunciation experiments both for
children and adults using different variants of the GOP algo-
rithm. We also compare the results to real-case mispronuncia-
tions for native children showing that GOP is less effective for
child speech than for adult speech.
Index Terms: speech assessment, mispronunciation detection
and diagnosis, data scarcity, child speech, ASR, GOP

1. Introduction
Computer-Aided Language Learning (CALL) is known to be
a useful tool for learning new languages due to its ubiquitous
availability and high degree of self-controlled manner of study.
The CALL system can be equipped with a Computer Assisted
Pronunciation Training (CAPT) component aiming at Mispro-
nunciation detection and/or diagnosis (MDD) where detecting
and correcting mispronunciations by the learner is vital. In this
respect, systems vary depending on the detail of feedback they
are able to provide (word or phoneme level).

One intuitive approach of MDD is to use speech from the
“teacher” and utilizes pattern matching mechanisms to judge
how different the input speech (“the student”) is from the gold
standard (the “teacher”). Within this direction, Lee et al. [1]
experimented with dynamic time warping (DTW) using MFCC
and Gaussian posteriorgram (based on a pre-trained universal
background model) as features for the alignment between the
teacher and the student. However, this kind of approach suf-
fers from the limited number of stored audio templates from the
teacher and it is often not reasonable to rely on one single piece
of teacher’s speech given that the variability in speech is huge,
e.g, age, gender, accent, noise, etc.

This problem can be mitigated by utilizing well-trained
acoustic models from an ASR system. The goodness of pro-
nunciation (GOP) [2] is one of those approaches which requires
only the canonical phoneme level transcription together with
the student’s speech, and a well trained ASR model, without the
need of teacher’s voice. Many variations of GOP were proposed
to increase the accuracy, e.g., the Weighted-GOP (WGOP) [3],
the context-aware-GOP (CaGOP) [4], the Lattice-based GOP

(LGOP) [5], the Force-aligned GOP (FGOP) [6]. Neumeyer
et al. [7] also investigated to use the likelihood-based scores
from the Gaussian mixture model based hidden Markov model
(GMM-HMM) for ASR, but unlike the GOP which was com-
puted over phoneme segments, the likelihood ratio here was
computed at frame-level and duration or the speed of the speech
were considered at both word and sentence level to improve
the accuracy. Maximum likelihood linear regression (MLLR), a
widely used speech adaptation method for ASR, was studied for
GOP in [6]. Hu et al. [8] compared three different approaches to
implement DNN-based GOP and showed that the “senone av-
erage posterior” approach outperforms the other methods. Lin
et al. proposed a transfer learning approach for training a hi-
erarchical deep neural MDD system [9]. More recently re-
searchers [10, 11] have explored to use a generally pretrained
model as feature extractor, together with an end-to-end speech
recognizer as fine-tuning task, and finally adapted to the target
data for MDD. The advent of these approaches mitigated the
problem of limited availability of annotated material for cer-
tain target groups of speakers, e.g., L2 learners or children with
speech disorders, and achieved good performance. However,
due to the end-to-end nature of the models, feedback was in
these cases limited to a general pronunciation score, and no de-
tailed phonetic information was provided by the system. The
prior linguistic knowledge of mispronunciation for the target
users can be injected to ASR systems by means of extended
recognition network (ERN) [12]. Similarly, Dudy et al. [13]
studied the data from children with speech disorders and explic-
itly modeled the typical error patterns in their proposed GOP
(GOP-CI).

The motivation of this work is to investigate the potential
of applying GOP-alike algorithms to child speech. In spite of
being a slightly older technique, GOP has the advantage of giv-
ing detailed information about pronunciation quality at the pho-
netic level. This may constitute very valuable information for
an L2 learner. The main challenges we face in this work are the
large variability of child pronunciation and the scarcity of pho-
netically annotated material for second language (L2) learners
of young age. To overcome the scarcity of material, we per-
form our analysis based on a number of openly available speech
datasets spanning different dimensions of speech variability, in-
cluding age, dialect or foreign accent, spontaneity and environ-
ment conditions. We firstly analyze the spread of the distri-
butions of GOP scores (including possibly correct and incorrect
pronunciations) on the different datasets. Secondly, we simulate
mispronunciation detection by introducing artificial errors sim-
ilarly to [14], but with systematic phoneme replacements that
include all possible phoneme pairs. We report area under the
curve results for both child and adult data. We also compare
the statistics of artificial errors to real-case errors by human an-
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notations for the child data. Finally, the above analysis was
performed using several variants of the GOP score to show how
the different methods compare when applied to real-case pro-
nunciation errors for child speech.

2. Methods
We will first discuss the different GOP definitions used in this
paper, and then the method and the assumptions we use to per-
form our analysis.

2.1. GOP definitions

There exist a large number of definitions and variations of GOP-
alike methods. We start by introducing the original version from
[14] and then explain the GOP methods that we use in our ex-
periments. The original GOP [14] uses ASR methods to align
the correct pronunciation to the speech recording by means of
forced alignment. It then scores deviations in pronunciation of
each phoneme with the following equation:

GOP(p) = log

(
p(O|p)P(p)∑

q∈Q p(O|q)P(q)

)
/Np (1)

where p represents the correct phoneme, O = {o1, . . . , oNp}
is the sequence of observations corresponding to the segment
for phoneme p and is derived from forced alignment. Q is the
set of phonemes of the target language and Np is the length
of the segment. P(p) is the prior probability for phoneme p
which is conventionally neglected. We will remove this term in
the following discussion as it is not part of the implementation.
GOP relies on the HMM-based ASR models to compute the
probabilities in Eq. 1. In these models, each phoneme is often
modeled as three successive states or senones. The numerator
in Eq. 1 should be in principle computed with the forward al-
gorithm. However, this likelihood is often approximated by the
likelihood of the Viterbi path using the correct phoneme model.
Similarly, the denominator is approximated by the likelihood of
the best path through the segment O, obtained from a phone
loop decoding of the entire utterance.

Some variations of GOP (e.g. LGOP) were motivated by
the observation that the likelihood of the denominator may be
under-estimated because running the phoneme loop over the
entire utterance may introduce misalignments of the phoneme
best path with respect of the forced alignment in the numer-
ator. In other variants (e.g. FGOP), instead, it was observed
that stronger constraints could improve the accuracy. To ex-
plore these two extremes, we use the following two versions of
GOP throughout our experiments. The first version denoted as
GOP-align is computed by:

GOP-align(p) = log

(
p(O|SS(p))

maxq∈Q p(O|SS(q))

)
/Np (2)

where SS(p) is phoneme p’s senone sequence derived from full
utterance forced alignment and restricted within the observa-
tion sequence O. For the denominator, for each phoneme in
the inventory, we compute the Viterbi likelihood for the ob-
servations O given the corresponding phoneme model. Again,
SS(q) denotes the corresponding senone level best path through
the model. GOP-align is considered to have the strongest con-
straint on the denominator because it forces the alignment for
each phone model p to start at the beginning of the sequence O
and end at its end. This method is similar to FGOP ([6]). The

second method, GOP-frame, is defined by:

GOP-frame(p) =
1

Np

Np∑

i=1

log

(
p(oi|ss(p, i)

maxs∈S p(oi|s)

)
(3)

where S is the set of senones for all the phonemes in our model,
ss(p, i) is the ith senone from the senone sequence of phoneme
p derived from the forced alignment. The denominator is cal-
culated by searching for the best senone in a frame-by-frame
manner, i.e., the best state in the pool of models to explain the
current observation oi. In this case, we disregard the transition
model in the HMM for the denominator, and allow any state of
any model to contribute to the likelihood for each observation.
This method is similar to the idea of “normalized likelihood
metric” proposed by Neumeyer et al. in [7] and could be con-
sidered as the other extreme of GOP-align which has only minor
constraint.

2.2. Analysis Methods

The goal of this paper is to perform an analysis of the perfor-
mance of different GOP scores on child speech, in spite of the
lack of well annotated data. Our analysis is limited to English,
and is performed with three methods. The first method, in the
lack of mispronunciation annotations, uses an indirect observa-
tion to infer the potential performance of GOP for child speech.
The assumption is that, if GOP is a good indicator of pronun-
ciation quality, it would be desirable that the spread of GOP
scores be smaller for native adult and child speakers than for
non-native adult speakers. To test this we estimate the distri-
butions of GOP scores on different datasets with varying age,
degree of spontaneity, and language proficiency and compare
the spreads of these distributions.

The second method makes up for the lack of annotated
non-native child speech recordings by simulating mispronunci-
ations. The method is similar to [15], but we perform phoneme
substitutions systematically considering any possible pair of
phonemes and picking the worst case scenario (the least separa-
ble substitution). In this case, we use the area under the receiver
operating characteristic curve (AUC-ROC) to evaluate the per-
formance of the GOP score in detecting simulated mispronun-
ciations. This score is independent of the threshold chosen to
perform the binary classification.

In this formulation, the number of positive and negative ex-
amples is, in general, unbalanced. To verify that the AUC score
is not strongly affected by this, we also tried to sub-sample the
class with the most samples. Because the results were similar,
we report results obtained on the full data, here.

The third method uses real mispronunciations (or rather
phoneme substitutions) by children to validate the results from
the simulated experiment. In this case, because we need pho-
netically annotated material, the amount of data is more lim-
ited than in the simulated case, but it is more representative of
real mispronunciations. To detect what kind of substitutions are
present in the spoken utterance we realign the canonical pro-
nunciation from the lexicon to the phonetic annotations in the
dataset.

In our analysis, we test different GOP definitions and differ-
ent models to estimate the probabilities described in Eqns. 1–3
amd further explained in Section 3.
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Figure 1: GOP distributions per dataset using the DNN-HMM-
tri-frame method.

3. Experiments

3.1. Data

We select four English datasets containing speech with different
characteristics, both in terms of speaker and speaking style:

The LibriSpeech ASR corpus [16] is a well preprocessed
dataset designed for ASR training in the domain of audio books.
We use the part “train-100-clean” to train the teacher’s ASR
models. It contains 100 hours of book reading from 251 gender
balanced adult speakers. For testing the GOP methods, we com-
bine the “test-clean”, “dev-clean”, “test-other” and “dev-other”
for a total of around 21 hours of audio read by 146 speakers. We
include the dev parts in the test set because we do not use them
for parameter optimization. Whereas the training speakers are
mostly native speakers with US accent, the test set may contain
some accented speech.

The second dataset is Voxforge [17] that contains recording
submitted by volunteers reading prompted text. In our exper-
iment, we randomly select 500 speakers and allow all possi-
ble dialects of English with different nationalities. There are
around 27.5 hours speech in total. The content domain of Vox-
forge overlaps slightly with LibriSpeech but with a wider vari-
ability in terms of accents and dialects. In addition, since the
recordings are performed by volunteers in an uncontrolled envi-
ronment, this data also reflects a certain degree of environment
noise, different microphones etc.

The third dataset is TEDLIUM [18]. The data is recorded
by 1862 speakers with multi culture backgrounds and accents
giving TED talks in English. We randomly select 10,000 utter-
ances from various speakers which add up to 3.2 hours in total.
In our view, this dataset represents stronger accent and spon-
taneity compared the the previous datasets. The environmental
noise is also an issue here.

Finally, for the child speech, we used the full CMU Kids
dataset [19]. This data is collected from children of age six to
eleven in the US’s local schools. CMU Kids has 9.1 hours of au-
dio in 5180 utterances spoken by 24 male and 54 female speak-
ers. Part of the speakers are at risk of becoming bad readers.
The dataset is equipped with annotations for the erroneous ut-
terances. In our tests we divided this data according to whether
it contains erroneous utterances or not. The complete dataset is
referred to as CMU-kids, and the dataset where incorrect pro-
nunciations have been filtered out as CMU-kids-filtered.

Figure 2: AUC-average per GOP method on the Librispeech,
complete CMU-kids and filtered CMU-kids datasets.

3.2. Training the ASR teacher models

We use Kaldi [20] to train the ASR models used for the align-
ment and the probability estimation in the GOP scores. We
trained four models, depending on if we include phonetic con-
text in the modeling (mono vs tri) and if we use GMMs or DNNs
as state output probability estimators. We use the Librispeech
lexicon [16] covering 206495 English word pronunciations us-
ing a set of 39 phonemes. Each phoneme is further catego-
rized with positional and stress information (if it is a vowel)
plus some other affiliated tokens (silence, noise, disambiguate
symbols) which sum up to 364 phonemes for our HMM in total.
The number of independent states is decided during the train-
ing with a decision tree while the number of Gaussian in each
GMM is dynamically adjusted iteratively. For the DNN, we
use the standard feed-forward-structure with four hidden lay-
ers with p-norm activation [21] as in the standard Kaldi recipe.
13 dimensional MFCC features with cepstral mean normaliza-
tion are used with all the models. For the GMM-based models,
delta features are computed to increase the context awareness
whereas for DNN-based models, a window of size 9 (±4) is ap-
plied to the MFCC features and fed into a fixed Linear Discrim-
inant Analysis (LDA) affine-transformation without dimension
reduction. We use the same data (train-100-clean) for training
all the models.

3.3. GOP implementations

We implement the GOPs as described in Section 2 using Kaldi1.
The phoneme alignment is always performed using the con-
text independent GMM-HMM model, to make sure all the GOP
evaluations are performed on the same set of observations O
(see Eqns. 1–3). The alignment not only provides information
of segmentation of the phonemes, it also generates the senone-
sequence as needed in the numerators of Eqn. 2 and Eqn. 3.
Note that, for DNN models, the acoustic likelihood is calcu-
lated by p(si|oi)/P (si) where p(si|oi) is the softmax output
and P (si) is the prior for each senone estimated when training
the model. This is equivalent to computing p(oi|si) because the
missing term p(oi) is the same on the numerator and denomi-
nator for the GOP calculation, and cancels out.

In the following we will refer to the GOP evaluation method
by combining the method for state output probability estimation
(GMM vs DNN), the context dependency (mono vs tri) and the

1https://github.com/frank613/GOPs.git
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Figure 3: AUC comparison for each phoneme, sorted by the AUC values for real errors of CMU-kids

method for computing the GOP (align vs frame). For example
GMM-mono-frame corresponds to the GOP computed by Eq. 3
and using the context independent GMM-HMM model as prob-
ability estimator.

4. Results and discussion
The results of the first analysis are reported in Figure 1 which
plots the distribution of DNN-tri-frame GOPs over different
datasets. We also produced similar plots with the other GOP
methods obtaining similar results and decided to omit them for
space constraints. A similar spread of the GOP distribution is
observed for Librispeech and Voxforge. Both datasets include
read speech (low spontaneity) from adult speakers. The larger
variability of Voxforge in terms of native and non-native accents
and recording conditions does not seem to have a strong impact
on the GOP values. Moving on, the CMU-kids-filtered, con-
taining native child speech with correct pronunciations, shows
a higher spread of GOP scores compared to Librispeech and
Voxforge, which was expected due to the larger variability and
higher spontaneity of child speech. More surprisingly, how-
ever, the spread for CMU-kids-filtered is also higher than for the
TEDLIUM data. The latter contains recordings by non-native
adult speakers with a higher degree of spontaneity and should
correspond to much larger GOP variability than the first. This
seems to imply that age has a stronger impact on the GOP scores
than possible mispronunciations or strong non-native accents.
Finally the non-filtered version of CMU-kids which includes
mispronunciations by children displays the widest spread. Al-
though this analysis is not conclusive on the performance of
GOP for each dataset, it should indicate a potential problem
with using this pronunciation detection technique with children.

Motivated by the above results, we analyze the discrimina-
tive ability of GOP in terms of AUC values, using both sim-
ulated and real mispronunciations. In this case we focus on
Librispeech and CMU-kids as representative of adult and child
data. The corresponding results are shown in Figures 3 and 2.

Figure 2 compares the the AUC values when using different
ASR models and different GOP definitions over the Librispeech
and CMU-kids data. Results are reported for three cases: sim-
ulated mispronunciations both for adult speech (Librispeech-
artificial) and child speech (CMU-kids-filtered-artificial) and
real mispronunciation for children (CMU-kids-real). The re-
sults show that, regardless the model and the GOP definition,
the adult simulated substitutions are easier to detect. Artificial
substitutions for children are harder, but not as hard to detect
than the real mispronunciations. This is expected because the
main difference between the simulated and real errors is that
the first assume a substitution between two completely differ-

ent phonemes from the phoneme inventory (although we con-
sider the closest substitution). In the case of real errors, instead,
we consider any possible deviation from the correct pronuncia-
tion. The different methods do not report large differences for
adult speech. However, for child speech results are slightly
contradictory. For real mispronunciations, DNN-tri-frame is
the best method, followed by DNN-mono-frame, GMM-mono-
frame and GMM-mono-align. On the contrary, for simulated
mispronunciations, GMM-mono-align seems to outperform the
other methods. These results may be explained considering the
different kind of errors (simulated vs real), however, we would
need a more detailed analysis to confirm this hypothesis.

In Figure 3 the AUC values obtained with the DNN-HMM-
tri-frame method are reported for each phoneme. Again simu-
lated and real errors are used similarly to Figure 2. From the
figure it can be seen that results are strongly dependent on the
phoneme. However, in all cases, the AUC for adult speech is
better than for child speech. Also, in the majority of cases, for
the children real mispronunciations seem to be more difficult to
discriminate than artificial ones, as was the case for the global
results in Figure 2. The exceptions are S, AY, N, T, K, L, B, ER,
P M, EH, and OW.

5. Conclusions
In this work, we present the analysis of goodness of pronun-
ciation (GOP) scores applied to child data. Because of the
scarcity of phonetically annotated data for second language
learners of young age, we use a number of methods to infer
the potential performance of GOP for mis-pronunciation detec-
tion. We first compared the distributions of GOP scores for
different dimensions of speech variability observing a larger
variability for child data as opposed to adult data, even when
non-native speakers were included in the analysis. We then ran
mis-pronunciation detection (MDD) on both simulated and real
mispronunciations both for child and adult data. We show that
MDD is always harder for child data than for adult speech. We
also show that real mispronunciations are on average harder to
detect than simulated ones, with some exceptions. This indi-
cates that simulated mispronunciations could be a good method
to investigate MDD in the case of data sparsity. We believe that
our results indicate the need for further research in this area,
both to produce more reliable data, and to propose methods that
are more robust with respect to the age of the language learner.

6. Acknowledgements
This research has been funded by the TEFLON NordForsk
project nr. 103893 and by the SCRIBE Research Council of
Norway project nr. 322964.

4616



7. References
[1] A. Lee and J. Glass, “A comparison-based approach to mispro-

nunciation detection,” in 2012 IEEE Spoken Language Technol-
ogy Workshop (SLT), 2012, pp. 382–387.

[2] S. M. Witt and S. J. Young, “Phone-level pronunciation scoring
and assessment for interactive language learning,” Speech com-
munication, vol. 30, no. 2-3, pp. 95–108, 2000.

[3] J. Doremalen, C. Cucchiarini, and H. Strik, “Using non-native
error patterns to improve pronunciation verification,” 09 2010, pp.
590–593.

[4] J. Shi, N. Huo, and Q. Jin, “Context-aware goodness of
pronunciation for computer-assisted pronunciation training,”
2020. [Online]. Available: https://arxiv.org/abs/2008.08647

[5] Y. Song, W. Liang, and R. Liu, “Lattice-based gop in automatic
pronunciation evaluation,” 2010 The 2nd International Confer-
ence on Computer and Automation Engineering (ICCAE), vol. 3,
pp. 598–602, 2010.

[6] D. Luo, Y. Qiao, N. Minematsu, Y. Yamauchi, and K. Hirose,
“Analysis and utilization of mllr speaker adaptation technique for
learners’ pronunciation evaluation,” in Tenth annual conference of
the international speech communication association, 2009.

[7] L. Neumeyer, H. Franco, V. Digalakis, and M. Weintraub, “Auto-
matic scoring of pronunciation quality,” Speech Communication,
vol. 30, no. 2, pp. 83–93, 2000. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167639399000461

[8] W. Hu, Y. Qian, and F. K. Soong, “A new DNN-based high qual-
ity pronunciation evaluation for computer-aided language learn-
ing (CALL),” in Proc. Interspeech 2013, 2013, pp. 1886–1890.

[9] B. Lin and L. Wang, “Deep Feature Transfer Learning for Au-
tomatic Pronunciation Assessment,” in Proc. Interspeech 2021,
2021, pp. 4438–4442.

[10] X. Xu, Y. Kang, S. Cao, B. Lin, and L. Ma, “Explore wav2vec 2.0
for mispronunciation detection.” in Interspeech, 2021, pp. 4428–
4432.

[11] Y. Getman, R. Al-Ghezi, E. Voskoboinik, T. Grósz, M. Kurimo,
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