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Abstract 

Understanding speech in challenging listening environments 

relies on diverse streams of information, including sensory 

signals, prior knowledge, and expectations. This is a challenge 

for patient populations who have compromised bottom-up 

sensory information. Neural entrainment evaluations can offer 

insights into the effects of signal degradation on speech 

processing. We collected electroencephalography from normal 

hearing listeners, in order to evaluate the effects of spectro-

temporal information removal on speech intelligibility and 

cortical tracking. Our results showed a decrease in speech 

intelligibility with increased degradation and a decrease in 

encoding accuracy for the degraded conditions, compared to the 

clean control, but no differences in encoding accuracy between 

degradation conditions. We found significant differences 

between the weights of temporal response functions of clean 

and degraded speech conditions, which were specific to each 

type of degradation. 

Index Terms: Neural tracking, speech intelligibility, spectro-

temporal sensitivity, EEG 

1. Introduction 

Several studies have used cortical tracking in response to 

naturalistic stimuli providing insights into speech processing 

and remarking the impact of attention, prior information, and 

speech processing mechanisms [1-5]. Nevertheless, the specific 

consequences of reduced spectro-temporal modulation content 

on neural tracking can still be further addressed. 

Spectro-temporal modulations are the fundamental building 

blocks of complex signals [6-7], carrying important cues for 

speech intelligibility [8]. Studying the limitations of missing 

spectral and temporal information are of particular importance 

for aging populations, as well as recipients of hearing devices 

as they receive less spectro-temporal information overall [9-10] 

or have a broader tuning [11], both detrimental for speech 

processing. Assessing cortical tracking under situations with 

spectral and temporal degradations can help us better 

understand how stimuli are encoded/decoded in these patient 

populations, while providing an objective measure to study the 

speech processing hierarchy, when confronted with bottom-up 

degradations in the input speech signal. 

Currently, cortical tracking has contributed to our 

understanding of potential mechanisms associated with speech 

enhancement under complex listening scenarios. A previous 

study by Holdgraff and colleagues [12] showed that, in a 

repetition paradigm, context-specific information shifts the 

spectro-temporal tuning of neurons in the superior temporal 

gyrus, assessed using high-gamma activity recovered from 

electrocorticography recordings. In other words, context 

specific information provided an enhancement of the stimulus 

features. Using a similar paradigm Di Liberto et al. [13], also 

found influence of prior information, on low frequency cortical 

tracking, with influence mainly on phonetic feature encoding. 

Based on their results, the authors argued the possibility that the 

shifts in tuning to spectro-temporal information found in [12] 

could be the result of changes in phonemic encoding. Recently 

[14], proposed that envelope tracking is affected by both 

acoustic and speech specific processing, adding to the idea that 

envelope tracking is not only representative of bottom-up 

acoustic features, but that potentially, these top-down effects 

can permeate into lower processing stages. For degraded 

speech, encoding accuracy for electroencephalography (EEG) 

signals, using a spectro-temporal modulation model, has been 

shown to follow opposite effects with stimulus degradation, 

which depend on context [15]. Matching expectations leads to 

a decrease in accuracy as signals become clearer, while 

mismatched expectations lead to a decrease in encoding 

accuracy as signals become clearer.  

 

Figure 1: Hypothesis and rationale for the study. Clean 

and degraded speech signals were presented to 

participants (top row shows degradations), while EEG 

signals were recorded. Encoding models were recovered 

using the clean speech signals. We show expectations for 

encoding prediction accuracy values. 
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In this study, we collected a new EEG dataset in order to 

evaluate the effects of speech degradation on cortical tracking 

of acoustic features.  We selectively removed spectro-temporal 

modulations from speech signals by filtering in the modulation 

domain, and keeping high levels of speech intelligibility (above 

~60%). We expected that a decrease in modulation content 

would lead to a decrease in acoustic encoding accuracy (see 

Figure 1) showing the impact and dominance of acoustic 

features. 

2. Methods  

2.1. Participants 

This study was approved by the research ethics committee of 

the School of Engineering at Trinity College Dublin and in 

compliance with the University’s GDPR policies. Thirteen 

English speaking (native), right-handed participants (Age 

[range]: 25 [20-30] yrs., 8 female) volunteered for the study. 

Their hearing thresholds were assessed between 0.25 – 6 kHz 

and ensured to be below 20 dBHL (Hekto Diagnostic, Horentek 

Hearing Diagnostics, USA). All participants completed both 

behavioural and EEG assessments on the same day.  

2.2. Stimulus degradation and delivery 

Speech stimuli used a sampling frequency of 44.1 kHz, 16-bit 

resolution. The stimuli processing used in this study involved 

selective removal of spectral or temporal modulations using the 

procedure described in [8], also used in [12]. Briefly, signals 

were first transformed into their spectrogram representation 

using gaussian filters with 32 Hz width in the frequency domain 

(i.e., 5 ms in time domain). Next, the modulation power 

spectrum of the signal was obtained applying a two-

dimensional Fourier transform. Low-pass filters in the 

modulation domain were then applied by zeroing coefficients 

beyond the filter cut-off. Finally, the stimuli were taken back to 

a time-frequency representation, via an inverse Fourier 

transform, which was inverted into a time waveform using an 

iterative procedure. All filtering was carried out offline.  

Stimuli were delivered using insert earphones (Etymotic ER2, 

Etymotic Research Inc., USA) connected to a Tascam US-100 

sound interface (TASCAM, US) and a FiiO Alpen headphone 

amplifier (Guangzhou FiiO Electronics Technology Co., Ltd., 

China).  

2.3. Behavioural assessment 

For the behavioural assessment, we used the first 15 lists of the 

IEEE sentence material [16]. Each of them consisted of 10 

sentences, narrated by a male speaker. For each participant, we 

selected seven lists at random. Within each list, we randomized 

the modulation low-pass filters to be applied to each sentence. 

Based on pilot data, we selected spectral cut-offs of 0.15, 0.24, 

0.39, 0.62 and 1 cyc/kHz and temporal cut-offs of 2, 3.3, 4.5, 

5.8, 7 Hz, in order to obtain psychometric functions. All 

sentences were RMS normalized after filtering, and presented 

at a level of 63 dBA/channel. 

The experiment was presented using MATLAB r2021b and was 

self-paced. Participants had to listen to each sentence and then 

type in what they perceived. Accuracy was assessed by 

evaluating the number of correctly identified unique words 

within each sentence. 

2.4. EEG evaluation 

2.4.1. Stimuli and task   

For the material used in the EEG experiment, we selected 25 

audio snippets from the audiobook of a classic novel ("The Old 

Man and the Sea"), narrated by a male speaker in English. Each 

of the snippets was approximately three minutes in length. The 

experiment had five conditions: two spectral and two temporal 

degradations, and a clean control. Each condition had an equal 

number of trials. We used the filtering procedure described in 

section 2.2, with temporal and spectral cut-offs of 5, 6 Hz and 

0.3, 0.45 cyc/kHz, respectively. These limits were selected, 

based on a pilot study, in order to maintain intelligibility levels 

above 60%. All the snippets were RMS normalized after 

filtering, and presented at a level of 63 dBA/channel. 

Degradation and presentation order were randomized for each 

participant. 

We presented our stimuli using Presentation software 

(Neurobehavioral Systems, Inc., USA), which provided a 

trigger sent via parallel port and recorded by the EEG amplifier. 

This allowed the correct synchronization between stimuli and 

EEG recordings. 

EEG signals were recorded with a 64-channel BioSemi Active 

Two system (BioSemi B.V., The Netherlands) using a sampling 

rate of 1024 Hz. We recorded from 64 scalp electrodes and two 

reference channels located at the mastoids. Testing was carried 

out in a dark room and participants were instructed to maintain 

visual fixation on a cross centred on the screen for the duration 

of each trial. Participants were suggested to take breaks every 

three consecutive blocks and had a long break at trial number 

15. The experiment was self-paced with further breaks allowed 

in between trials. To ensure attention, two questions were asked 

after each trial. Based on the presented snippet, participants 

could answer "True", "False" or "I don't know".  

2.4.2. Feature extraction 

We used spectrogram representations of the clean speech 

signals as the feature in our encoding analysis (Figure 1). To 

obtain this feature, we first filtered each of the clean speech 

audio files using a gammatone filterbank, consisting of 20 

logarithmically spaced bands spanning the range 80-8000 Hz 

[17]. Next, we extracted the envelope by computing the signal 

power and then resampling the signal to 64 Hz, using a moving 

average filter (mTRFenvelope in [18]). Finally, we applied a 

compression to the envelopes by raising them to the power of 

log10(2). 

2.4.3. Pre-processing of EEG signals 

EEG processing was carried out using Fieldtrip toolbox [19], 

NoiseTools [20] and custom-made code, in Matlab r2021b.To 

summarize, the EEG signals were initially re-referenced to the 

mastoids. This is an obligatory step for BioSemi devices, in 

order to achieve a correct common mode rejection. Next, we 

low-pass filtered (Butterworth, 3rd order, zero-phase shift) the 

signals with a cut-off of 8 Hz and down-sampled to 64 Hz. We 

then applied a robust re-reference method (nt_detrend in Noise 

Tools), to get to an average reference and to remove step-like 

responses if present. After this step, we applied a high pass filter 

at 1 Hz (Butterworth, 3rd order, zero-phase shift), which 

completed the bandpass filter procedure, targeting delta and 

theta bands (1-8 Hz). We subsequently identified poor quality 

channels as those whose median standard deviation was below 

1/6 or above 3 times the median standard deviation across all 
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channels. These channels were interpolated using a spherical 

spline interpolation based on the time series of its neighbours. 

Finally, we performed independent component analysis, with 

the number of independent components being the rank of the 

EEG data matrix. This step was only used to project-out eye-

blink components, which were determined by visual inspection 

of the time-series and topographic plots. The data was then 

epoched to the trial length and again re-referenced to the 

average between the mastoids. 

2.4.4. Multivariate temporal response function (mTRF) fitting 

To get the mTRFs for each condition, we used the mTRF 

Toolbox [18]. We used regularized (ridge) regression between 

the spectrogram features and the EEG data, with a time window 

from -150 to 450 ms. We applied both regularization (λ=10-8, 10-

7,…, 108) and used a leave-one-out cross-validation between 

trials, to avoid over-fitting and maximize prediction accuracy. 

Accuracy was always assessed using Pearson correlation (r). 

Once the data was fitted, we obtained for each participant and 

condition a null distribution of prediction accuracies, achieved by 

obtaining prediction accuracies with 100 random permutations of 

trials as well as circular-shifting the features.  

We assessed prediction accuracy for every condition, by fitting 

models for each participant, using clean speech as a predictor and 

the weights extracted from the clean speech condition for 15 

fronto-centrally distributed electrodes. For each participant, we 

calculated the median mTRF weights for the clean condition 

trials, after z-scoring the weights for each trial. Then we used this 

clean set of model weights and clean speech inputs, to predict 

EEG responses in all conditions. We report the average encoding 

accuracy across the selected electrodes. 

We performed a separate encoding analysis to obtain model 

weights for every condition, including their prediction accuracy 

and null distributions, for each participant, electrode, and trial. 

We intended to evaluate differences between model weights 

when the predictor was the clean speech signal. We obtained 

mTRFs for each condition, by averaging only those electrodes 

above significance level within trials with mean accuracy above 

significance level. Given that we allowed the model weights to 

be adjusted across conditions, encoding accuracy was typically 

above significance. However, we had to exclude subjects 11 and 

13 from two conditions and subject 2 from one condition. Finally, 

we obtained normalized TRFs for each participant by calculating 

their z-scores across trials for each condition and calculated the 

grand-average weights across participants as dimensionless mean 

z-scores (additional material). 

3. Results  

3.1. Behavioural assessment 

Removing spectral or temporal information caused a drop in 

intelligibility (Figure 2). We noted that performance typically 

reached a plateau, forcing us to adjust a lapse rate of 10%. These 

results are in-line with other studies using similar filtering 

techniques [8, 21].  

At the group level, the cut-offs selected for temporal and 

spectral degradation for the EEG evaluation roughly correspond 

to the same intelligibility levels for both degradations (correct 

word discrimination: mean ± σ:  Temporal<5 Hz: 74% ± 3.4%, 

Spectral<0.3 cyc/kHz: 68% ± 4.5%, Temporal<6 Hz: 87% ± 

1.2%, Spectral<0.45 cyc/kHz: 83% ± 2.7%). These are still high 

levels of speech intelligibility, though we found them to be 

significantly different from each other (paired samples t-test 

between the means at each level of degradation, extracted from 

logistic fit Spectral: t(12)=-6.54, p<0.01, Temporal: t(12)=-6.02, 

p<0.01). 

 

Figure 2: Group level intelligibility outcomes for 

spectral (left) and temporal (right) degradation. Dots 

represent the mean and error bars the 95% confidence 

intervals for pooled data. Logistic fits are included (dark 

trace represents the mean).  

3.2. Encoding models 

We tested our main hypothesis by evaluating the decoding and 

encoding accuracy from our degraded stimulus paradigm. Firstly, 

in line with our hypothesis, prediction accuracy dropped when 

using the clean speech model, meaning that stimulus degradation 

was evident in the EEG signals (Figure 3).  

 

Figure 3: Group level encoding accuracy. Error bars 

correspond to standard error around the mean accuracy. 

Each dot represents the average for a participant. Gray 

horizontal lines correspond to significance levels. 

Asterisks mark significant differences (p<0.01).    

This was further assessed with a repeated measures ANOVA, 

showing main effects for condition (F(4,48)=38.88, p<0.01, 

η2=0.764). However, this difference did not follow the gradual 

trend we had foreseen, dropping to a similar level across 

conditions, which was typically below significance level 

(paired samples t-test between conditions and significance level, 

Clean: t(12)=6.47, p<0.01; Temporal<5 Hz: t(12)=-0.28, p=0.78; 

Temporal<6 Hz: t(12)=0.11, p=0.91; Spectral<0.3 cyc/kHz: 

t(12)=-1.66, p=0.12; Spectral<0.45 cyc/kHz: t(12)=-0.76, 

p=0.46). Post-hoc comparisons, Bonferroni corrected, showed 

that the clean speech condition was the only condition 

significantly different from the others (Clean vs. Temporal<5 

Hz: t(12)=-9.26, p<0.01; Clean vs. Temporal<6 Hz: t(12)=8.97, 

p<0.01; Clean vs. Spectral<0.3 cyc/kHz: t(12)=10.92, p<0.01; 
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Clean vs. Spectral<0.45 cyc/kHz: t(12)=9.71, p<0.01) and there 

were no significant differences between the other conditions.  

The evaluation of the weights of the encoding models, obtained 

for each condition but using clean speech as a predictor, showed 

that the clean speech condition (Figure 4, top panel) was in line 

with previous literature using comparable stimuli and paradigm 

[4]. In an exploratory analysis, we evaluated whether 

differences between neural responses for each condition were 

identifiable in the weights of the mTRFs. We performed a 

cluster-based non-parametric permutation analysis (N=5000, 

corrected for multiple comparisons), to evaluate differences 

(p<0.05) between the weights obtained for the degraded 

conditions and the clean control (Figure 4, bottom panel). We 

found significant differences at similar latency ranges for both 

types of degradations, around 100-200 ms, but for different 

frequency regions in each condition. 

 

Figure 4: Top: Weights of encoding model for the clean 

speech condition. Bottom: Results of permutation-based 

analysis. Shaded regions correspond to significant 

differences (p<0.05) where Clean>Degraded.     

4. Discussion 

Behavioural results were in-line with the notion that spectral 

and temporal modulations are key features for speech 

understanding. The behavioural outcomes for both conditions 

also followed a previous study that used the same filtering 

procedure [8]. For the temporal degradation condition, our 

participants performed slightly better than those from another 

study [21], however, we note that the material and filtering 

techniques used differed from ours. For the spectral 

degradations, another study [12] used the same technique we 

used but, employed a cut-off at 0.5 cyc/kHz to produce 

unintelligible speech. Here we needed stricter cut-offs to 

achieve a comparable reduction in speech intelligibility, with 

our results being in-line with the notch-filtering results in [8]. 

The results of the encoding analysis followed our hypothesis, 

showing that prediction accuracy was affected by the stimulus 

degradation. This was evidenced as a decrease in prediction 

accuracy, which has been observed in previous studies [14, 15]. 

However, we did notice that prediction accuracy dropped for 

most subjects, being on average, below significance level and 

did not follow the gradual trend we considered. It is likely that 

the degradation was high enough to get to this low accuracy 

levels, but also similar intelligibility across conditions should 

be considered. In [14], the authors pointed out that in general, 

envelope encoding is dominated by acoustics, however, 

intelligibility also affects the encoding/decoding accuracy. In 

our case, it is possible that the intelligibility difference between 

conditions was small enough to be over-run by the applied 

degradations, without significant contribution to the overall 

encoding accuracy. An analysis of the sensitivity of mTRFs to 

spectro-temporal degradations with intelligibility changes 

could be considered using further degradation levels.    

When comparing the degraded stimulus envelopes against the 

clean speech envelope, we observed a decrease in correlation 

coefficients between the clean and degraded envelopes 

(additional material). We saw no shifts in tuning, as mentioned 

in [12], interpreted here as an increase in weights for a specific 

frequency band, but rather a drop in the weights around the 

frequency bands where the degradation was the strongest. We 

interpret these differences between weights to be indexing the 

bottom-up degradation we applied; thus, it is possible that 

within this framework, responses were driven primordially by 

acoustics. The differences observed between the clean and 

degraded mTRFs, show consistent variations across conditions. 

The latency where differences were observed was around 100-

200 ms for both types of degradation. For the spectrally 

degraded condition we saw a reduction for the lower-mid 

frequencies (80-1300 Hz). Part of this lower frequency range is 

typically where first and second formants are found [22] and is 

a region carrying pitch information [8]. On the other hand, for 

the temporal modulations, we observed effects at similar 

latencies, but for higher frequencies (above 1200 Hz). These are 

frequency bands associated with consonant information. 

Whether a reduction in mTRF weights, with reduced bottom-up 

information, can be an objective indicator of the impact of 

speech degradation on components of speech remains to be 

addressed, for example, by evaluation of phonemic loss in the 

behavioural data and extending our analysis using linguistic 

models.  

5. Conclusion 

In this study, we collected an EEG dataset using continuous 

stimuli consisting of clean and spectro-temporally degraded 

speech via modulation filters whilst maintaining high 

intelligibility. This allowed us to evaluate multivariate temporal 

response functions in normal hearing individuals when 

confronted with reduced bottom-up information. Our 

framework is an effort to understand how selective loss of 

spectral or temporal modulation information would manifest in 

linear encoding models. We found that our stimulus 

manipulations were evidenced in cortical tracking. With each 

type of degradation having characteristic and significantly 

different weights from the clean speech condition at specific 

frequency ranges, within the same time window. Future 

research will evaluate the mTRFs at a higher step in the speech 

processing hierarchy, addressing differences between acoustic 

and linguistic models, and including a thorough analysis of 

phonemic loss across participants. 
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