ISCA Archive Interspeech 2023
ISCA Archive Interspeech 2023

Knowledge-Retrieval Task-Oriented Dialog Systems with Semi-Supervision

Yucheng Cai, Hong Liu, Zhijian Ou, Yi Huang, Junlan Feng

Most existing task-oriented dialog (TOD) systems track dialog states in terms of slots and values and use them to query a database to get relevant knowledge to generate responses. In real life applications, user utterances are noisier, and thus it is more difficult to accurately track dialog states and correctly secure relevant knowledge. Recently, a progress in question answering and document-grounded dialog systems is retrieval-augmented methods with a knowledge retriever. Inspired by such progress, we propose a retrieval-based method to enhance knowledge selection in TOD systems, which significantly outperforms the traditional database query method for real-life dialogs. Further, we develop latent variable model based semi-supervised learning, which can work with the knowledge retriever to leverage both labeled and unlabeled dialog data. Joint Stochastic Approximation (JSA) algorithm is employed for semi-supervised model training, and the whole system is referred to as JSA-KRTOD. Experiments are conducted on a real-life dataset from China Mobile Custom-Service, called MobileCS, and show that JSA-KRTOD achieves superior performances in both labeled-only and semi-supervised settings.