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Abstract
To study variations in vowel sounds between different sociolin-
guistic groups, sounds must be normalized to minimize vari-
ations caused by physical factors. The Lobanov method, for
example, standardizes formant distributions by speaker. Since
formants are often difficult to measure, and offer only a partial
description of sounds, a robust and reproducible normalisation
method based on the whole spectrum would be useful. One
candidate is speaker-level standardization in the latent space of
a variational auto-encoder, trained on a large sample of vowel
spectra. We show that whole spectrum transformations induced
by latent normalisation shift formants similarly to direct for-
mant normalisation. We also show that formant-based normali-
sation procedures can be used to induce whole-spectrum trans-
formations via latent space.
Index Terms: normalisation, formants, vowels, dialects, soci-
olinguistics

1. Introduction
Variations in the way that people use language based on where
they are from, or on their social characteristics, have long
fascinated both professional linguists and the wider popula-
tion. These variations can occur at many levels, including lex-
icon, syntax, prosody and the inventory of individual phones
or phonemes used by each speaker [1, 2]. At the level of
phonemes, vowel sounds, which are the primary carriers of lin-
guistic information in connected speech [3, 4], exhibit a par-
ticularly wide range of variations both in terms of the inven-
tory used by each speaker, and how this inventory is deployed
within different words [5]. For example Figure 1, derived from
the Survey of English Dialects [6], gives an approximation of
how the fraction of speakers who use a similar vowel sound
in the words “foot” and “strut” varied geographically in Eng-
land amongst speakers born near the start of the 20th century.
The same pattern, marked by a distinctive east-west “isogloss”
persists to this day. The existence of these patterns mean that
linguistic variations between speakers can be used to draw in-
ferences about their geographical origins and social group [7].
Beyond academic interest, such inferences have applications in
combating linguistic profiling and in forensics [8].

1.1. Speaker normalisation for sociolinguistics

In order to use sound recordings to study variations in the
sounds used by different speakers, an essential first step is to
normalize measurements extracted from them to reduce vari-
ations caused by physical differences between the vocal ap-
paratuses of the speakers [9]. In the case of vowels, which
are resonant sounds made without significant restriction of air-

Figure 1: Fraction of speakers for whom the vowels in “foot”
and “strut” rhyme. Data taken from the Survey of English Di-
alects.

flow through the vocal articulators [10], the most common mea-
surements of interest are formants [11, 12]. Although there is
more than one definition of these quantities [13, 14], they are
commonly understood to be resonant frequencies of the supra-
glottal vocal tract, typically measured as the locations of peaks
of the spectral envelope, and labelled F1, F2, F3, . . . in order of
increasing frequency. They may be calculated from linear pre-
diction coefficients estimated from a short window of the speech
signal [12]. The salience of formants to the measurement of
vowels derives in part from their close relationship to the tra-
ditional linguistic features of tongue height and backness [15]
which determine position on the vowel quadrilateral, used near
universally as a means to describe vowel inventories in world
languages [16, 17]. Formants are widely used as a basis for
speaker normalisation because of their connection to the size
and shape of the vocal tract. For a given configuration of the
vocal articulators (tongue, lips, teeth) a speaker with a larger
vocal tract will produce lower formants [18].

Much research has been carried out to find the optimal
formant transformations to remove sound variations caused by
physical differences without also suppressing socio-linguistic
variations [19]. In this paper we will consider the simple but
effective Lobanov method, where each formant value is stan-
dardized for each speaker, s, using the mean and variance of
its value over a set of utterances representative of the range of
sounds uttered by that speaker. That is

F †
i (s) =

Fi − µi(s)

σi(s)
(1)

where F †
i is a single normalized measurement of the ith for-
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mant, and µi(s), σi(s) are its mean and standard deviation over
the representative sounds of speaker s. Formants normalized in
this way can be transformed back to typical Hertz values using
a reference mean and standard deviation µi and σi calculated
from the population as a whole. The final adjusted formant is

F̃i(s) = µi + σiF
†
i (s). (2)

The mean and variance is therefore the same for all speakers,
with sociolinguistic variations assumed to be captured by other
characteristics of the distributions of the F̃i. We refer to equa-
tion (2) as standard Lobanov normalisation.

1.2. Problems with formants

The widespread use of formants as speech features is testament
to their usefulness in applications, including dialect comparison
[20, 21], measuring linguistic variation and change [1], speech
synthesis [22, 23] and the analysis of vocal tract shapes and con-
figurations [24]. However, they give only a partial description
of sounds and, more importantly, there are problems with their
automatic measurement which may not be fully resolvable [25].
Their estimation involves the use of algorithms with parameters
which must be adjusted to achieve reasonable results, and if one
formant is incorrectly identified this affects all higher formants
[14]. Further, it may not be reasonable to view all vowel sounds
as composed of a small number of simple resonances. In sum-
mary, when they work, it is hard to beat formants as a quanti-
tative measure of vowel sounds in terms of efficiency and ex-
planatory power. However, they are neither always measurable
nor always meaningful, and they do not offer a complete de-
scription of the perceptual characteristics of vowels [26]. When
normalizing speakers for sociolinguistic analysis, we would like
a technique which can transform the whole spectrum, and which
possesses the positive characteristics of methods based on for-
mants, but does not necessitate their measurement.

1.3. Labonov normalisation in the latent space of a Varia-
tional Autoencoder

An unsupervised learning technique which has found many ap-
plications in speech technology is the variational auto-encoder
(VAE) [27, 28, 29]. The VAE is a probabilistic generative model
including latent variables which encode key features of high di-
mensional data such as audio. The VAE has been used for var-
ious forms of speaker normalisation [30, 31], for example to
improve automatic speech recognition using small amounts of
audio for each speaker [30]. Our focus is on vowels, where sub-
stantial data is available for each speaker, and a simple and re-
producible method is needed to normalize differences in vowel
sounds for sociolinguistic analysis. We note that recent work
has shown that formants can be successfully encoded by la-
tent VAE features [32], indicating the potential of the VAE to
improve on formant normalisation, whilst retaining its useful
characteristics.

We briefly review essential principles of the VAE. It is a
joint probability model p(x, z) where x ∈ RN is a high dimen-
sional random vector representing observable data, and z ∈ RM

is a lower dimensional “latent” random vector which captures
the salient features of x. In the case of vowels, we view x as
the spectrum, and we might expect the corresponding z vectors
to encode features which are closely related to formants. In this
paper we use a Gaussian VAE, for which the distribution of x
conditional on z is defined to be

pθ(x|z) ≜ N (x|µθ(z), σ
2I) (3)

where I is the N × N identity matrix and µθ(z), known as
the decoder, is a neural network with parameter vector θ, which
maps latent vectors to points in RN . The variance σ2 is a con-
stant whose relevance we describe below. The prior distribution
of z is defined to be standard multivariate normal

p(z) ≜ N (z|0, I) (4)

where I is the M × M identity matrix. The intractability
of the marginal likelihood pθ(x) and the posterior distribution
pθ(z|x) is dealt with by introducing a variational approxima-
tion [33] to the posterior

pθ(z|x) ≈ qϕ(z|x) ≜ N (z,µϕ(x), diag{σ2
ϕ(x)}) (5)

where the parameter vectors µϕ(x) ∈ RM and σ2
ϕ(x) ∈ RM

are the outputs of an encoder neural network with parameter
vector ϕ. The VAE is trained by maximizing a lower-bound of
ln pθ(x) averaged over the data. This “evidence lower bound”
(ELBO) is defined

ELBO(x) ≜ Eqϕ(z|x)(ln pθ(x|z))−DKL(qϕ(z|x)||p(z))
(6)

where DKL denotes the Kullback-Leibler divergence. The first
term on the right in (6) is

−M ln(σ
√
2π)− 1

2σ2

∫
∥µθ(z)− x∥2qϕ(z|x)dz (7)

which measures the reconstruction error of the decoder µθ(z)
averaged over the distribution of latent vectors generated by
the encoder qϕ(z|x) for given input x. From this we see that
smaller values of σ result in a higher penality for reconstruc-
tion errors. The second term on the right in (6) measures the
extent to which the posterior distribution departs from the stan-
dard normal prior, and acts as a regularization term which en-
courages the marginal distribution of latent vectors generated
by the empirical data to be as close to standard, uncorrelated
multivariate normal as possible.

The aim of this paper is first to explore the effect of transfer-
ring the process of Lobanov normalisation to the latent features,
by considering its effect on decoded spectra. Having considered
direct latent space normalisation, we investigate latent transfor-
mations which change the whole spectrum, based only changes
in formants. Finally we consider the extent to which formants
are disentangled in latent space.

It is important that normalisation methods used for sociolin-
guistic analysis are simple, transparent and reproducible. Since
simpler techniques are preferable in this regard, we work with
the most basic kind of VAE. The contribution of our paper is to
illustrate the potential advantages of using probabilistic latent
variables models as an alternative to formant based methods for
performing speaker normalisation for sociolinguistic analysis.

2. Methodology
For simplicity in this paper we take x to be order 16 LPC
smoothed log power spectra [12] evaluated at 100 frequencies
in the interval [0, 4000] Hz, equally spaced on the mel scale
[34]. This is a wide enough frequency range to contain F1, F2

and F3 for most speakers [20]. We computed spectra at the
midpoint of each vowel in the TIMIT database [35], using 512
frames (32ms at 16 kHz sample rate, Hanning window applied),
and normalize so that the average power over all frequencies
is zero for each spectrum. Our experience with formants sug-
gests that each such spectrogram should be describable using
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a small number of features, perhaps six if we believe that for-
mant peak locations and heights vary independently, so we set
M = 6. We found that larger M values lead to redundant latent
directions (zero variance). Our encoder and decoder are simple
multi-layer networks with hidden layer sizes [100, 100, 50] and
[50, 100, 100] respectively. Experimentation with σ revealed
that σ2 = 0.1 produced reconstructed spectra with minimal
distortion (such as spurious extra formant peaks) whilst main-
taining a near-normal marginal posterior distribution. We im-
plemented the VAE using PyTorch [36] and trained using the
Adam optimizer for 80 epochs with batch size 128 and learning
rate 10−3. Reduction in the overall loss was negligible beyond
this point.

For each spectrum in our dataset we computed the first three
peak locations (formants) and also its latent features via the en-
coder. We then fit K-nearest-neighbours regressors F̂i(z) [37]
with K = 100 and Gaussian weights (bandwidth 0.5, chosen to
minimize test prediction error) to predict formant values from
latent position, obtaining root mean squared test errors of 38Hz,
145Hz and 299Hz for predictions of F1, F2, F3. The regression
functions allow us to approximate formant gradients ∇F̂i(z) in
latent space using finite differencing. In this paper, for simplic-
ity, we focus on normalisation of the first two formants. We
performed the three experiments listed below, with results re-
ported in section 3. Python implementations of core functions
used are publicly available [38].

2.1. Lobanov normalisation in latent space

To investigate the effect of applying a standard speaker normali-
sation method to latent variables we standardized the latent fea-
tures of each speaker as follows

z̃ =
z− µz(s)

σz(s)
(8)

where µz(s) and σ2
z(s) are the mean and variance of the latent

features for speaker s. We then computed the transformed spec-
trogram, x̃, for each vowel utterance of each speaker using the
decoder

x̃ = µθ(z̃). (9)

We refer to this as direct latent space normalisation. Finally we
computed the spectral peaks of these transformed spectrograms,
and compared them to the corresponding Lobanov normalized
formants computed using equation (2).

2.2. Latent space transformation via gradient ascent

To induce whole spectrogram transformations from Lobanov
formant shifts we performed the following gradient ascent pro-
cedure using our regression functions {F̂i(z)}2i=1. For each
spectrogram, x, we first computed the Lobanov normalized for-
mants {F̃i}3i=1 according to equation (2). We then iterated the
following transformation in latent space, starting from the latent
position, µϕ(x), generated by the encoder

zn+1 = zn + α
2∑

i=1

(F̃i − F̂i(zn))∇F̂i(zn) (10)

with α = 10−5, until |F̃i − F̂i(zn)| reached a specified toler-
ance (15Hz) or the number of iterations exceeded a given max-
imum. We then computed the transformed spectrograms using
the decoder. We call this induced latent space normalisation.

2.3. Measuring disentanglement

We measured the disentanglement of formants in latent space
using two methods. Two features are disentangled in latent
space if the normal vectors to the hyper surfaces on which they
are constant are orthogonal. If Fi and Fj are disentangled

∇Fi(z).∇Fj(z) = 0 (11)

for all z. To quantify the extend of disentanglement we com-
puted the empirical distribution of

∇F̂i(z).∇F̂j(z)

|∇F̂i(z)||∇F̂j(z)|
(12)

over a large random sample of latent points. We then compared
this average to the distribution obtained by replacing formant
gradients with normal random vectors.

As a second measure of disentanglement, for each nearest
neighbour pair of latent vectors z1, z2, corresponding to real
spectrograms x1,x2, we computed the vector

|Fi(x1)− Fi(x2)|u12 (13)

where u12 = (z1 − z2)/(|z1||z2|) is a unit vector in the direc-
tion z1 − z2. We then calculated principle components for the
set of such vectors for each formant. The cumulative variance
explained by the principle components then gives a measure of
the dimension of the latent subspace within which each formant
varies.

3. Results
The relationship between standard Lobanov formant shifts, and
shifts produced by direct latent space normalisation, is illus-
trated in Figure 2. This shows scatter plots of formant shifts
generated for each spectrogram by the two procedures, and we
see that they are approximately proportional (linear correlations
50% and 25% respectively for F1 and F2 shifts). The mean ab-
solute shifts in F1 and F2 caused by Lobanov normalisation are
46.6Hz and 136.8 Hz. To quantify the difference in shifts pro-
duced by the two procedures, we let F ∗

i denote the value of Fi

after transforming latent variables, and define the difference be-
tween this an the standard Lobanov normalised formant F̃i for
a single spectrum, to be

∆Fi = F ∗
i − F̃i. (14)

Table 1 summarises the statistics of the magnitudes of these dif-
ferences. Figure 3 shows an example of a spectrogram shifted
by this method. The overall structure remains intact with the
same number of peaks, with locations close to those computed
via direct Lobanov normalisation. Figures 2 and 3 indicate that
formant locations have been encoded in the latent feature space,
and that speaker normalisation in latent space produces shifts
that are closely related to those obtained using direct formant
normalisation. However, we emphasise that the relationship be-
tween standard Lobanov and latent shifts is quite noisy, as quan-
tified by table 1, and that Figure 3 shows an example where
formant and latent shifts are closer than average.

In cases where formants can be reliably measured, the latent
variable model provides a method to induce a transformation of
the whole spectrogram via gradient ascent (10), using standard
Lobanov shifts as targets. A benefit of this approach is that
information about the sound, beyond simple formant values, is
also present after transformation. Figure 4 shows distributions
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Table 1: 50th and 90th centile absolute differences (Hz) in for-
mant shifts produced by standard Lobanov normalisation and
(1) direct latent normalisation, (2) induced latent normalisa-
tion with transformed formants computed by peak detection, (3)
induced latent normalisation with formants estimated by pre-
diction models F̂i(z).

Method |∆F1|50 |∆F1|90 |∆F2|50 |∆F2|90
1.Direct
Latent 39.9 94.1 117.5 287.8

2.Induced
(Peak) 12.1 48.7 29.9 131.9

3.Induced
(Model) 9.6 33.4 2.8 11.4

Figure 2: Scatter plots of formant shifts produced by standard
Lobanov normalisation (equation (2)) and by direct latent space
normalisation for F1 and F2. Lines show linear fits to the data.

of ∆Fi (equation (14)) which in this context may be viewed
as errors in the final result of the gradient ascent, for a random
sample of “significant” shifts (|F̃1 − F1| > 50Hz and (|F̃2 −
F2| > 100Hz). Error statistics are summarised in Table 1.

Finally we consider the extent to which formants are disen-
tangled in latent space. The mean of the normalized dot product
in equation (12) over a random sample of 103 spectra is only
marginally smaller than the same measure where the gradients
are replaced with random vectors (0.34 vs. 0.37 for F1 and
F2), indicating that formants are not disentangled. Our mea-
sure of the dimension of the latent sub-spaces within which
each formant varies, computed by principle component anal-
ysis of the set of vectors defined by equation (13) leads us to
similar conclusions. A four dimensional subspace is required to
explain 85% of the variation in F1 and a five dimensional space
is needed to explain 87% of the variation in F2. While disen-
tanglement is not essential for our normalization methods to be
effective, recent work [32] suggests that it may be achievable
using higher dimensional latent spaces.

4. Conclusions
To analyse sociolinguistic variations in vowel sounds it is essen-
tial to normalise speech features [9]. The standard method for
achieving this is formant normalisation. One well known ex-
ample is Labonov normalisation, but many other formant based
methods exist [19]. There are two weaknesses with the formant
based approach. First, formants are not always a measurable
or meaningful way to characterise sounds. Second, they of-
fer only a partial description of the spectrum, and there may
be many other interesting features which should also be nor-

Figure 3: Example spectrogram transformed by direct normal-
isation of latent features. Vertical back and red-dashed lines
show original and shifted formants. Light red vertical lines
show standard Lobanov normalised formant values.

Figure 4: Distribution of errors in formants of shifted spectro-
gram with respect to targets computed via (a,b) peak detection
(c,d) prediction model applied to shifted latent features. Shaded
regions indicate ranges of standard Lobanov shifts considered.

malized and used to study language variation. A normalisa-
tion method which avoided formants, making it applicable to
any sound spectrum, would have the dual advantage of broader
applicability, and the normalisation of all features simultane-
ously. In this paper we have investigated the possibility of
using a latent variable model [27] to perform normalisation.
We have shown that simple latent standardization at the level
of individual speakers produces whole spectrum transforma-
tions which generate formant shifts consistent with the stan-
dard Lobanov method. We have also shown that spectra can
be normalised via a transformation induced only by targeting
formant shifts. These transformations were obtained using a
very simple VAE, suggesting that latent variable methods may
be worth pursuing as simple and reproducible tool for sociolin-
guistic analysis which are consistent with formant normaliza-
tion, but overcome formant measurement difficulties, and trans-
form the whole spectrogram in a principled way. The simple
method we investigated here could be improved first by devel-
oping a model of the full spectrum rather than the LPC enve-
lope, and second by exploring the extent to which latent space
normalisation changes physical rather than sociolingiustic fea-
tures, with a view to developing latent space transformations
optimally targeted to purely physical shifts.
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