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Sergio Burdisso⋆,1, Esaú Villatoro-Tello⋆,1, Srikanth Madikeri1, Petr Motlicek1,2

1Idiap Research Institute, Switzerland
2 Faculty of Information Technology, Brno University of Technology, Czech Republic
{sergio.burdisso, esau.villatoro, srikanth.madikeri, petr.motlicek}@idiap.ch

Abstract
We propose a simple approach for weighting self-

connecting edges in a Graph Convolutional Network (GCN)
and show its impact on depression detection from transcribed
clinical interviews. To this end, we use a GCN for model-
ing non-consecutive and long-distance semantics to classify the
transcriptions into depressed or control subjects. The proposed
method aims to mitigate the limiting assumptions of locality and
the equal importance of self-connections vs. edges to neighbor-
ing nodes in GCNs, while preserving attractive features such as
low computational cost, data agnostic, and interpretability capa-
bilities. We perform an exhaustive evaluation in two benchmark
datasets. Results show that our approach consistently outper-
forms the vanilla GCN model as well as previously reported re-
sults, achieving an F1=0.84% on both datasets. Finally, a qual-
itative analysis illustrates the interpretability capabilities of the
proposed approach and its alignment with previous findings in
psychology.
Index Terms: depression detection, graph neural networks,
node weighted graphs, limited training data, interpretability.

1. Introduction
According to the World Health Organization (WHO), an esti-
mated 970 million people in the world are living with a type
of mental disorder, being depressive and anxiety disorders the
most prevalent [1]. Traditionally, the diagnosis and assessment
for depression are done using semi-structured interviews and a
Patient Health Questionnaire (PHQ) [2] as main tools, and it is
generally based on the judgment of general practitioners. How-
ever, practitioners may fail to recognize as many as half of all
patients with depression [3]. Therefore, there is an acknowl-
edged necessity for digital solutions for (i) assisting practition-
ers in reducing misdiagnosis, and (ii) addressing the burden of
mental illness diagnosis and treatment [4, 5, 6].

Previous research has shown that language is a powerful
indicator of our personality, social, or emotional status, and
mental health [7, 8]. As a result, many work exists at the in-
tersection of artificial intelligence (AI), speech and natural lan-
guage processing, psycholinguistics, and clinical psychology,
showing that screening interviews, projective techniques, and
essays writing provide valuable insights into the cognitive and
behavioral functioning of subjects [9, 10, 11, 12]. Existing
work on depression detection, via the use of textual transcrip-
tions from psychotherapy sessions, varies from sentiment-based
approaches [13], going through methods designed to identify
relevant vocabulary [10, 14], to various neural network archi-
tectures to best model the interviews, including bidirectional
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LSTM [15], hierarchical attention-based networks [16, 17], and
deep neural graph structures [18]. Other studies have experi-
mented with multi-target hierarchical regression models to pre-
dict individual depression symptoms, aiming to improve perfor-
mance by simultaneously predicting both binary diagnostic and
depression severity regression scores [19]. Finally, some works
have explored the utility of enriching the models with additional
(domain-specific) data [17, 20], e.g., incorporating external lin-
guistic knowledge to enforce higher values for attention weights
corresponding to salient affective words. Contrary to previous
work, our proposed approach has the following salient features:
does not require any external resource (data agnostic), does not
depend on large pre-trained language models to learn embed-
dings (low computational cost), and has interpretability capa-
bilities by design, a must in AI-supported diagnosis.

In particular, we propose to use a Graph Convolutional Net-
work (GCN) to classify the transcribed sessions between a ther-
apist and a subject seeking medical attention. Overall, the main
contributions of this paper are: (1) a novel weighting approach
for self-connection nodes to address the limiting assumptions of
locality and the equal importance of self-connections vs. edges
to neighboring nodes in GCNs; (2) to the best of our knowl-
edge, we evaluate for the first time an inductive implementa-
tion of GCNs in the task of depression detection from tran-
scribed interviews, outperforming previously published results
on two benchmark datasets; and (3) we demonstrate the inter-
pretability potential of the proposed model, a key characteristic
in AI-supported diagnosis, showing that what the model learned
aligns with findings in psychology research.1

2. Graph neural network architecture
A Graph Convolutional Network (GCN) is a multilayer neural
network that operates directly on a graph and induces embed-
ding vectors of nodes based on the properties of their neigh-
bors [21, 22] (Figure 1). Formally, considering a graph G =
(V,E,A), where V (|V | = n) represents the set of nodes,
E is the set of edges, and A ∈ Rn×n an adjacency matrix
representing the edge values between nodes. The propagation
rule for learning the new k-dimensional node feature matrix
H(l) ∈ Rn×k is computed as:

H(l+1) = f(H(l), A) = σ(ÃH(l)W (l)) (1)

where Ã = D− 1
2AD− 1

2 represents the normalized symmet-
ric adjacency matrix, Dii =

∑
j Aij is the degree matrix of

adjacency matrix A, W (l) depicts the weight to be learned
in the lth layer, and σ is an activation function, e.g., ReLU:

1Our code is available at https://github.com/idiap/
Node_weighted_GCN_for_depression_detection
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Figure 1: A two-layer GCN with nodes represented at three lev-
els: initial (e.g. one-hot), H(0), intermediate/hidden, H(1), and
output, Z, representations with the probability of each output
label. Circles → document nodes & triangles → word nodes.

σ(x) = max(0, x). In order to use GCNs for text classifi-
cation [21], we generate a large and heterogeneous text graph
that contains word nodes (Vwords) and training document nodes
(Vtr docs) so that global word co-occurrences can be explicitly
modeled. Accordingly, the entire set of nodes is composed as
V = {Vtr docs, Vwords}, i.e. the number of training documents
(corpus size) plus the number of unique words (vocabulary size)
of the corpus. Particularly, in this work, we use a two-layer
GCN defined as:

H(1) = σ(ÃH(0)W (0)) (2)

Z = softmax(ÃH(1)W (1)) (3)

where W (0) is the learned word embeddings lookup table, and
W (1) represents the learned weight matrix in the second layer.
Loss is computed by means of the cross-entropy function be-
tween Zi and Yi, ∀i ∈ Vtr docs. Intuitively the first layer learns
the intermediate representation of the nodes (words and docu-
ments) while the second one learns the output representation, as
illustrated in Figure 1. Note that in the output representation,
label information from the documents has been propagated to
the word nodes as output probabilities, allowing the model to
learn the relation between words and output labels (e.g. depres-
sion or control labels), a key aspect favoring the interpretability
of the model (see Section 4.1).

In order to make a fair comparison of the GCN’s perfor-
mance against other classification approaches, in this work we
use the inductive version of GCNs as described in [23] instead
of the original transductive one [21]. Thus, the initial node
feature matrix H(0) is generated such that word node vectors
are represented as one-hot vectors, i.e., H(0)

i = {0, 1}m,∀i ∈
Vwords, where m is the vocabulary size of the training docu-
ments. And, for the representation of document node vectors
H

(0)
i ,∀i ∈ Vtr docs the term-frequency-inverse document fre-

quency (TF-IDF) values of the corresponding word in that spe-
cific document is used, i.e., H(0)

ij = TF-IDF(i, j),∀i, j where i
and j are a document and a word, respectively.

For the definition of the edge types in A, we consider (i)
word-to-word, (ii) word-to-document, similar to [21, 23]. Our
key contribution here is the addition of a new edge type for (iii)
self-connections, acting as a trade-off parameter in the defini-
tion of Ã. Formally, this is expressed as follows:

Aij =





PMI(i, j) if i, j are words & PMI(i, j) > 0

PR(i, j) if i, j are words & i = j

TF-IDFi,j if i is document & j is word
0 otherwise

(4)

Table 1: Composition of the DAIC-WOZ and E-DAIC datasets
for depressed (D) and control (C) participants. Column ‘Cate-
gory’ depicts the number of participants for each class, ‘Vocab-
ulary’ represents the vocabulary size for each partition, ‘LR’
indicates the average lexical richness per instance, and ‘Dura-
tion’ indicates the length (hrs:mins:secs) values.

Dataset Category Vocabulary LR Duration

D
A

IC
-W

O
Z

train [D] 30 (28%) m = 5858 0.48 26h53m
[C] 77 (72%) (x̄=621.11) (x̄=15m04s)

dev [D] 12 (34%) m = 3268 0.47 10h01m
[C] 23 (66%) (x̄=664.22) (x̄=17m09s)

E
-D

A
IC

train [D] 37 (23%) m = 7991 0.55 43h29m
[C] 126 (77%) (x̄=576.20) (x̄=16m04s)

dev [D] 12 (21%) m = 4201 0.58 14h47m
[C] 44 (79%) (x̄= 488.05) (x̄=15m50s)

test [D] 17 (30%) m = 4183 0.63 15h14m
[C] 39 (70%) (x̄=447.87) (x̄=16m19s)

where PMI is the Point-wise Mutual Information and PR stands
for the PageRank algorithm [24], which given a graph computes
the importance of each node in relation to the role it plays on
the overall structure of the graph. Intuitively, high PMI values
will strongly link word nodes with high semantic correlation,
high TF-IDF values will strongly link word nodes to specific
document nodes, and high PageRank values will strongly link
a node to itself proportionally to its global structural relevance;
this last modification aims to mitigate the assumption of locality
and equal importance of self-loops, a known limitation in the
vanilla GCN [22]. We will refer to this modification as ω-GCN.

Finally, it is worth mentioning that GCNs allow to eas-
ily optimize the model efficiency by means of applying simple
feature selection techniques to reduce the vocabulary size (i.e.
number of word nodes), prior to the graph construction, which
has a direct impact on both the number of trainable parameters
and model’s interpretability (see section 3.2 and 4.1).

3. Experimental setup
3.1. Datasets

For the experiments, we use the Distress Analysis Interview
Corpus - wizard of Oz (DAIC-WOZ) dataset [25] and the
Extended Distress Analysis Interview Corpus (E-DAIC) [26].
Both datasets contain semi-structured clinical interviews in
North American English, performed by an animated virtual in-
terviewer,2 designed to support the diagnosis of different psy-
chological distress conditions. Datasets are multimodal cor-
pora, composed by audio and video recordings, transcribed
text from the interviews, and the Patient Health Questionnaire
(PHQ-8 [2]) scores. During our experiments, we only used the
speech transcripts from the subjects’s responses.

Table 1 shows the composition of the datasets. Observe
that the vocabulary size of the DAIC-WOZ is smaller than the
E-DAIC vocabulary; suggesting a lesser variation of terminol-
ogy in the provided answers, also reflected in a lower lexical
richness (LR), an indicator of the E-DAIC complexity.

2For DAIC-WOZ the virtual interviewer is human-controlled, while
for the E-DAIC the virtual interviewer is fully automatic. A portion
of the DAIC-WOZ transcriptions were generated using the ELAN tool
from the Max Planck Institute for Psycholinguistics [27], while the E-
DAIC transcripts were obtained using Google Cloud’s ASR service.
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3.2. Implementation details

As baseline models, we used different BERT-based models
as well as simple models. More precisely, we used six pre-
trained transformer-based models (bert-base-cased, bert-base-
uncased, bert-large-cased, bert-large-uncased, roberta-base,
roberta-large) to which a final linear layer was added to classify
the input using, as usual, the [CLS] classification special token.
In addition, to make the baselines as standard and simple as
possible we made use of the Transformers Python package [28]
AutoModelForSequenceClassification class so that the size and
number of linear layers are automatically selected according to
each model. For each model, we also evaluated two versions,
one enabling fine tuning of the base model and another not fine
tuning the base model as part of the training process. Regarding
simple and classic models, we used a Support Vector Machine
(SVM) with linear kernel and Logistic Regression (LR) model,
both using TF-IDF-weighted words as features.

For GCN models, the size of nodes’ intermediate represen-
tation was set to 64, i.e. we set k = 64 for the k-dimensional
feature matrix H(1) ∈ Rn×k. We performed a preliminary
evaluation varying k ∈ {32, 64, 128, 256, 300} from which
64 showed to consistently be the best performing one. In
addition, since GCN models allow us to control the vocab-
ulary size (i.e. number of word nodes), we trained differ-
ent GCNs using different vocabulary sizes, as with SVM and
LR models. Namely, we applied the following feature selec-
tion techniques to build the vocabulary: (a) automatic selection
based on term weights learned using LR; (b) top-k best selec-
tion based on ANOVA F-value between words and labels with
k ∈ {100, 250, 500, 1000, 1500}; and (c) full vocabulary. Try-
ing different sizes allowed to control the complexity of the final
model; GCNs with smaller vocabularies have smaller graphs,
making them simpler and easier to interpret.

Finally, all neural-based models were implemented us-
ing PyTorch while non-neural ones using Scikit-learn. Ad-
ditionally, for a fair comparison, all the models were op-
timized on each dataset using Optuna [29] with 100 trials
for hyperparameter search maximizing the macro averaged F1
score. For all neural-based models AdamW [30] optimizer
(β1=0.9, β2=0.999, ϵ=1e−8) was used with learning rate and
number of epochs n searched in γ ∈ [1e−7, 1e−3] and n ∈
[1, 10], respectively. On the other hand, for non-neural base-
lines, search was performed varying the regularization parame-
ter C ∈ [1e−3, 10], the class weight (balanced, none) and the
penalty norm (L2, L1, L2 + L1, or none). As a result, a total of
40 optimized models were obtained.3

4. Results
Table 2 summarizes our results for the experiments on the dev
partition DAIC-WOZ and on the dev and test partitions of E-
DAIC.4 For each partition, we divide the table into non-GCN
models (i.e., classic and BERT-based baselines and previous re-
search) and GCN models (vanilla GCN and our proposed ω-
GCN). In addition to the results, we also report the total num-
ber of trainable parameters (‘#Params’) and the vocabulary size
(‘Vocab size’). Dashes indicate the corresponding metric is
not reported in the original paper, while results marked with ∗
are not directly comparable as the model uses external domain-

314 simple baselines (SVM and LR with 7 vocabulary sizes), 12
BERT-based baselines (6 models with/without fine tuning), and 14 GCN
models (vanilla GCN and ω-GCN with 7 vocabulary sizes).

4DAIC-WOZ test partition is not publicly available.

Table 2: Results for dev and test partitions for DAIC-WOZ and
E-DAIC datasets respectively. Performance is reported in terms
of the F score (F1) for both control (C) and depression (D)
classes, and the Macro-F for the overall problem (Avg.).

Method #Params Vocab F1 score

size Avg. D C

DAIC-WOZ – (dev)

SVM 1952 1952 0.65 0.50 0.80
LR 250 250 0.60 0.45 0.75
BERT 335M 30522 0.68 0.58 0.78
BERT+FT 335M 30522 0.59 0.53 0.65
HCAG [16] - - 0.77 - -
HAN-L [17] - - 0.69 - -
Symptom-based [19] - - 0.75 - -
IDLV [10] - 100 0.64 0.52 0.77

vanilla-GCN 375K 5858 0.75 0.67 0.83
ω-GCN 375K 5858 0.76 0.67 0.86
vanilla-GCN 125K 1952 0.68 0.67 0.70
ω-GCN 125K 1952 0.79 0.76 0.83
ω-GCN† 16K 250 0.84 0.80 0.89

E-DAIC – (dev)

SVM 7991 7991 0.69 0.47 0.91
LR 7991 7991 0.71 0.53 0.90
BERT 108M 28996 0.61 0.46 0.75
BERT+FT 108M 28996 0.70 0.54 0.86
IDLV [10] - 1000 0.64 0.38 0.90
PV-DM [20]∗ - - 0.90 - -

vanilla-GCN 511K 7991 0.71 0.50 0.92
ω-GCN 511K 7991 0.80 0.67 0.94
vanilla-GCN 172K 2689 0.58 0.33 0.82
ω-GCN 172K 2698 0.70 0.54 0.86
ω-GCN† 16K 250 0.64 0.43 0.85

E-DAIC – (test)

SVM 250 250 0.69 0.60 0.78
LR 250 250 0.72 0.63 0.81
BERT 108M 28996 0.49 0.29 0.696
BERT+FT 108M 28996 0.75 0.65 0.85
VADER [13] - - - 0.72 0.85

vanilla-GCN 511K 7991 0.73 0.63 0.83
ω-GCN 511K 7991 0.72 0.63 0.81
vanilla-GCN 172K 2689 0.68 0.62 0.75
ω-GCN 172K 2698 0.73 0.63 0.83
ω-GCN† 16K 250 0.84 0.76 0.92

specific resources. Finally, for each dataset, we only report the
best-performing models among all 40 optimized models (see
Section 3.2).

Overall, we see that the ω-GCN approach consistently out-
performs its vanilla version. In addition, the model can outper-
form baselines and previously reported works when the correct
number of features is selected. For instance, on DAIC-WOZ, ω-
GCN obtains a macro F1 = 0.84 with only top-250 words. On
the E-DAIC dataset, the ω-GCN obtains the best performance
among the considered methods, with a macro-F1 of 0.80 and
0.84 for the dev and test partitions respectively. However, un-
like the DAIC-WOZ dev results, reducing the vocabulary size
leads to unstable performance between dev and test sets sug-
gesting models are sensitive to the (reduced) vocabulary dis-
crepancy between the training and evaluation sets, a similar phe-
nomenon as the one reported in [10], where authors argue is due
to the complexity of the dataset. We leave exploring methods
to mitigate this phenomenon as future work by moving from a
purely word-based vocabulary to, for instance, an embedding-
powered or sub-word one (e.g. as BERT with WordPiece).

Finally, GCNs have order-of-magnitude fewer parameters
than BERT models and are not constrained to a maximum se-
quence length (e.g. 512 tokens for BERT-based models).
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(a) Overall graph with learned node embeddings (b) Zoomed-in region showing clusters of words (embeddings)

Figure 2: Node embbedings learned for DAIC-WOZ. As in Figure 1, circles denote documents, triangles words, and colors denote class
([D] - depression, [C] - control). The gray rectangle in (a) indicates the zoomed region (b). Graph edges are also included.

4.1. Exploring the model’s interpretability

One of the main advantages of the proposed GCN-based ap-
proach is that does not sacrifices performance for the sake of
transparency. Figure 2 shows the UMAP [31] 2-dimensional
projection of the 64-dimensional word and document embbed-
ings learned by the best performing ω-GCN model on DAIC-
WOZ. More precisely, these embeddings correspond to the
intermediate representation H(1), with the 250 word nodes
painted with the learned class in the output representation Z.
The figure illustrates how the model can make use of the graph
structure to learn, in the same latent space, document and word
embeddings whose distance is influenced by their mutual rela-
tion and the output values. These embeddings allow to iden-
tify clusters of strongly related words with high co-occurrence
and linked to similar documents in the dataset, i.e., dataset-
specific “topics” that experts could potentially use for quali-
tative analysis. For instance, in DAIC-WOZ, interviews were
conducted with war veterans and Figure 2b depicts a few ex-
amples of these word clusters —e.g. (1) about “veterans” and
words like “worst”, “disturbing”, “avoiding” and “hurting”;
(2) about “police”, “strike”, “drama”, “moods”, “trigger”, “af-
fects”, “moods”; (3) about “attacks”, “injustices”, “solution”;
and (4) about “unemployed”, “suffering”, “awful”, “afraid”.

Finally, we performed an analysis of how much of the ac-
quired knowledge by the model fulfills known classical psycho-
logical theories/properties. For this, we used the Linguistic In-
quiry and Word Count (LIWC) [32] lexical resource, composed
of more than 4000 words, categorized into 64 psychological di-
mensions. Figure 3 shows the result of this analysis. X-axis de-
picts the psychological dimensions of the words learned by the
model, while the Y-axis represents the normalized frequency of
the respective dimensions. As shown, the model learned that
depressed subjects employ higher frequency dimensions related
to affective or emotional processes (affect), cognitive processes
(cogmech), relativity (relativ), and negative emotions (negemo).
On the contrary, control subjects use more frequently the social
processes (social), biological processes (bio), positive emotions
(posemo), family and body dimensions. Overall, these findings
are aligned with previously reported psychological work [33].

Figure 3: Psychological dimensions present in the model.

5. Conclusions
This paper proposes the use of Graph Convolutional Networks
to detect depression from transcribed clinical interviews. The
proposed approach has some attractive features, including a
simple yet novel weighting approach for self-connection edges,
a significantly low computational cost in terms of trainable
parameters, and interpretability capabilities that help to un-
derstand the model’s rationale. Evaluation results on two
depression-related datasets indicate that the proposed approach
is able to consistently outperform its vanilla version. Our best
configurations require orders of magnitude fewer trainable pa-
rameters than transformer-based models and yet, with the right
vocabulary size, are able to obtain better F1 scores than base-
lines and previously reported results. Finally, an exploration of
the interpretability capabilities of the model showed that what
it learned from raw data was, in fact, aligned with previously
reported work from the psychological theory. As future work,
we plan to use different nodes, from simple sub-word nodes to
node hierarchies with different types. For instance, the addition
of acoustic nodes, as a third type of node, would allow informa-
tion transfer among acoustic, words and document embeddings.
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M. Magimai.-Doss, and H. Jiménez-Salazar, “Approximating
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