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Abstract
Speaker diarization is a task concerned with partitioning an au-
dio recording by speaker identity. End-to-end neural diariza-
tion with encoder-decoder based attractor calculation (EEND-
EDA) aims to solve this problem by directly outputting diariza-
tion results for a flexible number of speakers. Currently, the
EDA module responsible for generating speaker-wise attractors
is conditioned on zero vectors providing no relevant information
to the network. In this work, we extend EEND-EDA by replac-
ing the input zero vectors to the decoder with learned conversa-
tional summary representations. The updated EDA module se-
quentially generates speaker-wise attractors based on utterance-
level information. We propose three methods to initialize the
summary vector and conduct an investigation into varying input
recording lengths. On a range of publicly available test sets, our
model achieves an absolute DER performance improvement of
1.90 % when compared to the baseline.
Index Terms: end-to-end neural diarization (EEND), EEND-
EDA, conversational summary vector

1. Introduction
Speaker Diarization is a task concerned with determining the
number of speakers and their respective speech activities for a
given input audio signal, often referred to as the problem of
“who spoke when?” [1]. A diarization system is considered to
be robust if it can perform well when dealing with overlapping
speech segments, long form audio and an arbitrary number of
speakers across a range of acoustic domains [2, 3].

Traditional methods employed to achieve diarization have
involved clustering-based approaches within a modular pipeline
structure [4, 5]. Given an input audio signal, speaker ac-
tive frames are detected with a voice activity detection module
(VAD). Speaker embedding vectors are extracted from speaker
active frames and clustered so that segments belonging to the
same speaker can be labelled. The main disadvantage with
clustering-based approaches is that they cannot handle overlap-
ping speech, an inherent characteristic of real world conversa-
tional data [2, 6]. Some methods have been designed to ad-
dress this problem [7, 8], however, this substantially increases
the complexity of the solution and inter-module dependencies.

End-to-end neural-based diarization systems directly solve
the overlapping speech issue, simplify the overall design of
the diarization pipeline and generally perform better than tra-
ditional approaches. End-to-end neural diarization (EEND) di-
rectly outputs diarization results by treating the task as a multi-
label classification problem [9]. EEND-based models require
permutation invariant training (PIT), as they currently predict
diarization results without taking into consideration speaker
order [10]. An encoder-decoder attractor calculation module

(EDA) can replace the classification head in EEND to flexibly
determine the number of speakers in a given utterance [11, 12].
The EDA module is responsible for creating speaker-wise at-
tractor representations for diarization results calculation and
speaker existence prediction.

However, the LSTM-based EDA module has limitations.
LSTM networks are prone to vanishing gradients when han-
dling long sequences such as recordings used for training in
diarization. This means for recordings containing a higher num-
ber of active speakers, the EDA module will struggle to produce
well-separated attractor representations. To tackle this problem,
the original authors shuffled input embeddings to the LSTM
encoder [12], and studied the use of both global and local at-
tractor calculation [13]. One key issue is that the EDA LSTM
decoder is expected to sequentially generate speaker-wise at-
tractor representations from only the last hidden and cell states
of the LSTM encoder. The input zero vector to the decoder con-
tains no relevant information to the network and is common to
all recordings processed by the model. By estimating a more
meaningful representation the model could perform better for
recordings containing a higher number of active speakers.

This work presents a feature-based approach to enhance at-
tractor representations in the EDA module of EEND-EDA for
better diarization performance in recordings containing a higher
number of active speakers. Inspired by the special classifica-
tion token in BERT [14], we introduce a summary vector to the
first frame of the subsampled acoustic input feature sequence
to learn a conversational summary representation. This learned
summary replaces the input zero vector to the EDA module pre-
viously used, giving the LSTM decoder additional utterance-
level information. Incorporating conversational summary rep-
resentations to the EDA module achieves a lower diarization
error rate (DER) when compared to the baseline, particularly
for recordings with a higher number of active speakers.

In Section 2 we revisit EEND-EDA, Section 3 outlines the
usage of the summary vector, Section 4 explains the experimen-
tal conditions, Section 5 discusses the results, Section 6 con-
cludes the paper.

2. EEND-EDA
EEND is the current state-of-the-art end-to-end diarization ar-
chitecture used by the community [9, 3, 15, 16, 17]. An EDA
module was introduced to allow EEND to handle an arbitrary
number of speakers [11, 12, 18, 19, 20].

The main training objective of EEND-based diarization
is to learn a mapping function that outputs the likelihood of
speech activities for multiple speakers given an input sequence
X ∈ RD×T . Here, X is a log-scaled Mel-filterbank acoustic
input feature sequence with dimension D and length T . Out-
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put embedding E ∈ RD×T is produced by passing X as input
to a Transformer-based encoder [21, 22]. Time shuffled em-
bedding E is input to an LSTM-based EDA module to predict
speaker-wise attractors A ∈ RD×(S+1), where S is the number
of speakers.

Diarization results are calculated by a sigmoid function op-
erating on the element-wise multiplication of A and E. This
outputs posterior probabilities (pt)

T
t=1 for the speech activi-

ties of multiple speakers across all frames. Where pt :=
[pt,1, ..., pt,S ] ∈ (0, 1)S are the posterior probabilities for S
speakers at frame t. These posteriors are without conditions to
decide the order of the speakers. During inference, the scalar
value of pt,s is used with a threshold value of 0.5 to determine
whether speaker s should be labelled as active or not at frame t.

Diarization Loss. A permutation free objective is used
to optimize the model by calculating the loss for all possi-
ble speaker assignments between diarization predictions and
groundtruth labels (yt)

T
t=1 [10]. Where yt := [yt,1, ..., yt,S ] ∈

{0, 1}S are the groundtruth labels for all speakers at frame t.
Here, ys,t = 1 and ys,t = 0 denotes whether speaker s is active
or not at t. The minimum loss is then taken for backpropagation
and can be defined as:

Ldiar =
1

TS
min

i ∈ perm(1,...,S)

T∑

t=1

H(pi
t,yt), (1)

where perm(1, ..., S) and pi
t resemble the set of permuta-

tions for all speakers and the permuted posterior labels at frame
t, respectively. Here, H(·, ·) is the binary cross entropy.

Attractor Existence Loss. The output hidden and cell
states of the EDA LSTM encoder henc are used to initialize the
hidden and cell states of the EDA LSTM decoder hdec. Speaker-
wise attractors are generated from input zero vectors:

hdec
s , cdec

s = hdec(0, hdec
s−1, cdec

s ) (s = 1, ..., S), (2)

where hidden state hdec
s corresponds to speaker s’s attrac-

tor. Attractor existence posterior probabilities are calculated by
inputting A to a fully connected layer followed by sigmoid acti-
vation. Attractor existence loss Lexist is calculated using equa-
tion (19) in [12].

The full training objective of EEND-EDA can be defined
as:

L = Ldiar + αLexist, (3)

where α is a hyperparameter.

3. Summary Vector for EEND-EDA
This Section explains the feature-based enhancement to the
EDA module of EEND-EDA [11], by learning a conversational
summary representation. Figure 1 presents the proposed net-
work architecture.

3.1. Summary vector estimation

The original encoder of EEND-EDA takes an input sequence X
and outputs embedding E. Inspired by how the special [CLS]
token is used in BERT [14], we modify the encoder to addition-
ally estimate a summary representation û ∈ RD of the original
input sequence:

û, E = enc(X). (4)

Figure 1: Proposed network architecture for EEND-EDA with
special summary vector representation. The network is similar
to EEND-EDA with convolutional subsampling and upsampling
[20]. The dashed box on the right shows the modification to
Conformer encoder when used with a special summary vector
representation.

E is input to the rest of EEND-EDA as usual [20]. We
replace the original input zero vectors to hdec in (2), such that
each estimated speaker-wise attractor is conditioned with û:

hdec
s , cdec

s = hdec(û, hdec
s−1, cdec

s ) (s = 1, ..., S). (5)

At each iteration the LSTM decoder now sees a conversa-
tional summary representation of the input audio sequence. henc

remains unchanged from the original design, as seen in equation
(16) of [12].

3.2. Summary vector formulation

We outline three different methods to initialize conversational
summary representation u of the encoder:
• Average pooling is used to summarize the mean presence of

features in X .
• Max pooling is used to summarize the most activated pres-

ence of features in X .
• A randomly initialized parameter of size D is added to the

encoder network so that it’s gradients can be updated by the
training objective.

3.3. Conformer encoder modification

Summary vector u is concatenated with input feature sequence
X for input to modules of the Conformer encoder [22], such
that the first frame of every sequence corresponds to a special
summary representation.
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Table 1: Datasets used at various experimental stages.

Stage Dataset #Speakers #Mixtures

Pre-training 1 LibriSpeech (β=2) 2 100,000

Pre-training 2 LibriSpeech (β=2, 2, 5, 9) 1 - 4 400,000

Fine-tuning

VoxConverse Dev.
DIHARD III Dev. (Train)
DIHARD III Dev. (Val.)
MagicData-RAMC Train
AMI Mix
AMI SDM1

1 - 20
1 - 10
1 - 10
2
3 - 5
3 - 5

216
162
41
289
136
135

Testing

VoxConverse Evaluation Set
DIHARD III Evaluation Set
MagicData-RAMC Test
AMI Mix
AMI SDM1

1 - 21
1 - 9
2
3, 4
3, 4

259
232
43
16
16

The dashed box on the right of Figure 1 shows our modifi-
cation to the Conformer encoder model architecture when using
an input with a special summary representation. The structure
of the encoder block is the same, using two feed-forward mod-
ules (FFN) in the style of Macaron-Net [23], a Multi-Head Self
Attention Module (MHSA), Convolution Module (Conv) and
layer normalization (LayerNorm). However, the hidden sum-
mary vector skips the Convolution module to ensure it main-
tains a global representation. The hidden feature sequence
passes through the Convolution module with a residual connec-
tion. The hidden summary vector is concatenated back with the
hidden feature sequence before input to the second feed-forward
module.

Mathematically, the outputs û, E of a single modified Con-
former block with summary vector u and input X is:

ũ, X̃ = (u ⊕X) +
1

2
FFN(u ⊕X)

u′, X ′ = (ũ ⊕ X̃) + MHSA(ũ ⊕ X̃)

X ′′ = X ′ + Conv(X ′)

û, E = LayerNorm((u′ ⊕X ′′) +
1

2
FFN(u′ ⊕X ′′)),

(6)

where the ⊕ notation denotes the concatenation of tensors.

4. Experiments
4.1. Data

Table 1 presents the datasets used across all experiments for
each stage of training and evaluation. LibriSpeech [24]1 record-
ings are used for both pre-training stages and are segmented us-
ing WebRTC VAD2. The 960 hours LibriSpeech training set is
used to simulate mixtures for 1, 2, 3 and 4 speakers by the pro-
tocol defined in [11]3. Where β is used to control the silence
duration and overlap ratio.

A number of public datasets covering a wide range of
acoustic environments were used for fine-tuning. This included
the VoxConverse [2]4 and DIHARD III [1, 25] Development

1https://www.openslr.org/12/
2https://www.github.com/staplesinLA/

denoising_DIHARD18/
3https://github.com/hitachi-speech/EEND/
4https://www.robots.ox.ac.uk/˜vgg/data/

voxconverse/

datasets, MagicData-RAMC training set [26] and the AMI Mix
and SDM1 training sets [27].

VoxConverse is a real world conversational dataset ex-
tracted from YouTube videos. Both the development set (20.3
hours) and evaluation set (43.5 hours) contains a significant
proportion of overlapping speech. The DIHARD III dataset is
a collection of various challenging datasets from 11 domains
with different recording equipment and environments. The DI-
HARD III Development set, consisting of 203 mixtures, was
split into training and validation sets by a ratio of 80%:20%
per domain. Magic-RAMC is a high-quality Mandarin con-
versational speech dataset recorded on mobile phones by na-
tive speakers. The AMI Meeting Corpus contains 100 hours
of recordings for close-talking (Mix) and far-field (SDM1) mi-
crophones in three rooms with varying acoustic properties in
English with mostly non-native speakers.

The VoxConverse and DIHARD III Evaluation sets, Magic-
RAMC test set and both AMI Mix and SDM1 test sets are used
for evaluation.

4.2. Experimental setup

The baseline model is EEND-EDA with no use of summary vec-
tor representations. For all models, the architecture of the en-
coder consisted of four stacked Conformer blocks (N = 4) each
with four attention heads. The Conformer encoder made use of
Macaron style [23] feed-forward layers with 1024 hidden units
and outputted 256-dimensional frame-wise embeddings. No
positional embeddings were used. Inputs to the model were 23-
dimensional log Mel-filterbanks with a frame length of 25 ms
and a frame shift of 10 ms. Input features passed through a 10-
fold convolutional subsampling module (Conv. Sub) consisting
of two convolutional layers with kernel sizes {3, 5} and stride
{2, 5}. The convolutional upsampling module (Conv. Up) used
two transposed convolutional layers with batch normalisation
and ReLU activation. Here, kernel sizes {3, 5}, strides {2, 5}
and output padding {1, 0} are used. We use the additive margin
penalty on diarization results only and set m to 0.35 [20].

Each model was pre-trained for two stages on the Lib-
riSpeech simulated mixtures. In the first stage of pre-training
each model was trained on mixtures containing only 2 speakers
for 100 epochs. In the second stage each model was then trained
for 25 epochs on a concatenation of mixtures containing 1 to 4
speakers. Models were adapted for a total of 500 epochs during
the fine-tuning stage.

The Adam optimizer [28] and Noam scheduler [21] with
100,000 warm-up steps was used during pre-training on sim-
ulated mixtures. At fine-tuning the Adam optimizer was used
with a fix learning rate of 1×10−5. Due to the time complexity
of PIT, the model was trained to output the four most dominant
speakers. Attractor existence loss Lexist was used to update
only the EDA module by cutting the computational graph of all
inputs to the EDA LSTM encoder to disable back propagation
to the preceding layers.

For all stages of training a batch size of 64 was used. Un-
less specified, input recording lengths were set to 5000. Chunk
shuffling was also used at fine-tuning [19]. All models were
trained on one GeForce RTX 3090 GPU for recording lengths
of 5000. This included ∼ 94 hours for pre-training and ∼ 22
hours for fine-tuning. Up to four GPUs were used when increas-
ing recording lengths to 20000 frames. Each model used 8.1M
parameters. The evaluation metric is the DER with no collar
tolerance. DER is composed of missed speech, false alarm and
speaker error metrics [4].
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Table 2: DER (%) results of different methods for initialising
summary vector across all test datasets combined.

Model NS2 NS3 NS4 NS2 to NS4 NS2 to NS9

Baseline 12.01 20.27 28.50 17.89 22.40
SR-AvgPool 11.99 19.96 28.62 17.89 22.26
SR-MaxPool 12.74 20.24 26.52 17.71 21.38
SR-Learned 12.46 19.65 24.49 16.86 20.50

Table 3: DER (%) results for each test set.

Dataset Model NS2 NS3 NS4 NS2 to NS4

DIHARD III Baseline 10.32 23.62 34.29 14.09
SR-Learned 10.90 25.64 34.95 14.82

VoxConverse Baseline 9.23 19.60 26.15 16.59
SR-Learned 8.66 14.59 15.34 11.94

MagicData-RAMC Baseline 14.37 - - 14.37
SR-Learned 14.94 - - 14.94

AMI Mix Baseline - 15.81 21.65 21.01
SR-Learned - 16.36 19.06 18.76

AMI SDM1 Baseline - 17.85 34.53 32.72
SR-Learned - 17.65 30.12 28.76

5. Results
5.1. Results on summary vector initialisation

The first experiment measured the DER performance of the
baseline to three models that made use of conversational sum-
mary representations. This compared the different methods de-
scribed in Section 3.2 to initialize the summary vector.

Table 2 presents the results across all test datasets com-
bined. For recordings containing two to four active speakers
(NS2 to NS4), we observe a relative DER improvement of 1.03
% using learned summary representations (SR-Learned) when
compared to the baseline. Most gains were made in recordings
with four active speakers (NS4). Initialising summary vector by
applying average pooling (SR-AvgPool) or max pooling (SR-
MaxPool) to the subsampled input sequence shows comparable
performance to the baseline. SR-Learned further improves the
absolute DER by 1.90 % when compared to the baseline for
recordings with two to nine active speakers (NS2 to NS9).

Table 3 shows a breakdown of results for each test dataset.
On average, SR-Learned outperforms the baseline on VoxCon-
verse and both AMI test sets, whilst performing comparably
with the baseline on other test sets. The most gains can be ob-
served in recordings with four active speakers.

Table 4: DER (%) results for all test datasets combined when
varying input recording lengths during fine-tuning.

Model NS2 NS3 NS4 NS2 to NS4 NS2 to NS9

Baseline 50s 12.01 20.27 28.50 17.89 22.40
Baseline 100s 12.97 19.39 25.62 17.49 21.33
Baseline 150s 13.03 16.97 25.79 17.36 21.22
Baseline 200s 13.11 23.67 25.02 17.77 21.50
SR-Learned 50s 12.46 19.65 24.49 16.86 20.50
SR-Learned 100s 12.35 18.99 22.24 16.03 19.74
SR-Learned 150s 11.28 19.02 23.76 15.87 20.08
SR-Learned 200s 11.87 18.59 22.38 15.75 20.02

Table 5: Dot-product similarity of output embeddings and at-
tractors, split by ground-truth labels. Where labels 1 - 4 refer
to frames where individual speakers are active. Labels 5 and 6
denote overlapping and silent frames, respectively.

(a) Baseline
Attractors

1 2 3 4

L
ab

el
s

1 5.4 -6.6 -4.2 -5.8
2 -6.6 3.2 -3.7 -5.0
3 1.7 -4.9 -1.8 -4.1
4 -5.7 -1.8 -5.0 1.4
5 0.9 -0.2 -2.1 -0.3
6 -23.9 -13.1 -12.3 -14.9

(b) SR-Learned
Attractors

1 2 3 4

L
ab

el
s

1 6.7 -9.2 -6.6 -7.5
2 -9.5 8.9 -8.0 -7.4
3 -6.6 -7.4 5.0 -7.3
4 -9.9 -10.2 -7.9 8.3
5 -1.9 -1.7 -1.4 0.7
6 -18.5 -27.2 -14.5 -10.0

5.2. Results on varying input recording lengths

By increasing the input recording lengths during fine-tuning the
model was able to train on sequences containing a higher num-
ber of active speakers, subsequently increasing the proportion
of speakers the EDA module was exposed to.

Table 4 shows the results for the baseline and SR-Learned
models when varying input recording lengths during fine-
tuning. Results for recording lengths of 5000 frames (50s)
are copied from Table 3. Both models achieve lower a DER
for three and four active speakers, whilst the baseline de-
grades in performance for recordings with two active speak-
ers. The best performing baseline uses recording lengths of
15000 frames (150s). SR-Learned improves this with an abso-
lute DER improvement of 1.49 % for two to four active speak-
ers. SR-Learned yields greater improvements when increasing
the length of input recordings, showing an absolute DER im-
provement of 1.11 % for two to four active speakers when com-
pared to the result for 50s. Improvements for two to nine active
speakers could be negligible due to the model only being trained
to diarize up to four active speakers.

5.3. Insights on the behavior of EDA

To gain more understanding about the behaviour of EDA, we
investigate the dot-product similarity between the output up-
sampled embeddings and attractors for both the baseline and
SR-Learned models. Table 5 presents the results for a four
speaker mixture from the AMI Mix evaluation set. The speaker
frames, overlapping frames and silent frames were assigned
based on the ground-truth labels. Attractors for both models
are seen to be well separated from embedding frames related to
silence. SR-Learned attractors are shown to be more separated
from frames not relating to their represented speaker when com-
pared to the baseline.

6. Conclusion
In this work, we introduced conversational summary represen-
tations for end-to-end neural diarization with encoder-decoder
based attractor calculation. Of the three methods investigated
for initializing the summary vector, it was found that an ad-
ditional parameter to the encoder network yielded the most
gains. Further improvements were observed when increasing
input recording lengths. Adopting the learned summary rep-
resentation, the model demonstrated an absolute DER perfor-
mance improvement of 1.90 % (for recording lengths of 5000
frames) for two to nine active speakers when compared to the
baseline.
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