
Towards reference speech characterization for health applications

Catarina Botelho1, Alberto Abad1, Tanja Schultz2, Isabel Trancoso1
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Abstract
Speech has been used as a biomarker for the binary classifica-
tion of multiple diseases, with promising results. However these
speech affecting diseases often co-exist in the same individual
and produce similar manifestations in the speech signal. Thus
we propose to characterize normative speech using reference
intervals for interpretable speech features (acoustic and linguis-
tic), as a first step towards the adoption of speech analysis for
multidisease screening in health applications. We discuss the
impact of demographics and speech tasks. Finally, we compare
the reference intervals with subjects suffering from Parkinson’s
disease, Alzheimer’s disease and depression.
Index Terms: Reference intervals, pathological speech, trust-
worthy biomarker

1. Introduction
Speech is a rich biosignal that encodes a great deal of infor-
mation about the speaker, including hints for the presence of a
plethora of diseases (e.g. neurological, psychiatric, and respi-
ratory disorders). Many researchers have leveraged this to pro-
pose systems to perform the binary classification of healthy con-
trols and single diseases (e.g. Alzheimer’s disease (AD) [1, 2],
depression [3], Parkinson’s disease (PD) [4, 5], and obstructive
sleep apnea (OSA) [6, 7]). In real scenarios however, these dis-
eases are not isolated from each other, and often co-exist. The
coexistence of two or more chronic conditions in the same in-
dividual, or multimorbidity, is common and has been rising in
prevalence over recent years [8], both in in developed coun-
tries [9], and low- and middle-income countries [10]. The prob-
lem of multimorbidity gains special importance in the context of
an aging population, where the coexistence of multiple diseases
tends to be the norm and not the exception [8].

PD and AD, for instance, are a risk factor for depression,
as well as the converse [11]. OSA has also been associated
with affective disorders, and decline of cognitive functions. Al-
though evidences for these interrelationships vary and further
researcher is needed, several studies report an association be-
tween OSA and depression, possibly mediated by disturbed
sleeping patterns, and/or obesity, which is a major risk factor
for OSA; and between OSA and cognitive impairments, possi-
bly mediated through repetitive hypoxemia [12].

Besides the fact that these diseases often co-exist, it is also
important to note that their manifestations on the speech sig-
nal partly overlap with each other. For example, both depres-
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Figure 1: Pipeline for characterizing reference speech.

sion ad PD have been associated with psychomotor retardation
which, in turn, causes disordered articulation, reduced speech
rate and affected the laryngeal control. For these two reasons,
we hypothesize that a speech-based tool to support medical di-
agnosis and monitoring of chronic conditions, as is the case of
AD, PD, and OSA, should address health from a holistic per-
spective, and allow an interpretative assessment of multiple dis-
eases, rather than providing a binary classification between a
given disease and healthy controls. However, existing datasets
for disease detection are often small and labeled for individual
diseases. Naive combination of different datasets containing
individuals with a single specific disease to perform a cross-
corpora study for multi-disease classification would most likely
result in unreliable results that would not properly generalize to
unseen recording conditions [13, 14].

With this in mind, we claim that a valuable step towards
the adoption of speech and language technologies in real health
applications would be to obtain a definition of control healthy
speech that could be used independently of the dataset of origin,
and later be applied to identify disease signatures. We propose
that this definition is based on reference intervals (RIs), which
describe the typical values (usually the central 95% interval) of
certain speech and language features within a reference healthy
population. RIs are a concept typically applied in the context of
laboratory results for medical diagnosis and monitoring. Here,
we explore that concept in the context of pathological speech.

This paper presents our first efforts in this direction of char-
acterizing reference speech. First, we define a knowledge-based
feature set informed by previous literature on the expected man-
ifestations in different diseases, including linguistic and acous-
tic features. A key aspect of these features is that they should be
explainable and have some physical meaning, to allow mean-
ingful discussion with the medical community. Then, we de-
fine RIs for these speech features using three English corpora
(CLAC [15], VoxCeleb [16], and TIMIT [17]). In this pilot
work, we compare the derived RIs with the Pitt Corpus of De-
mentiabank [18], which is annotated for dementia and depres-
sion, and with the subset of sustained vowels of PC-GITA [19],
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annotated for Parkinson’s disease. Future work should extend
the reference population, the feature set, and the validation of
the RIs with corpora defined for other diseases.

2. Related Work
RIs describe the typical values of certain parameters within a
reference healthy population. When a result falls out of the RI,
it does not indicate the presence of a disease, but rather the ne-
cessity for medical follow up and investigation of the possible
underlying reasons. On the other hand, results within the RI do
not necessarily imply minimal risk of an adverse clinical out-
come [20]. There are two main approaches for deriving RIs:
the direct approach and the indirect approach. The direct ap-
proach refers to the traditional method that starts with selecting
a population and collecting the samples. The indirect approach
consists of performing data mining of results that already inte-
grate existing routine pathology databases, that were collected
as part of routine clinical testing. In this work, we propose a
method parallel to the indirect approach, where we leverage
speech recordings from existing corpora designed for different
purposes. The guidelines for RI estimation recommend a mini-
mum of 400 subjects in each partition.

3. Method
The general pipeline is summarized in figure 1. A more detailed
description follows bellow1.

3.1. Feature set

We defined a feature set of 84 interpretable features (acoustic
and linguistic) that have been associated with the manifestation
of different diseases in speech. To extract the linguistic features,
we first generated automatic transcriptions using Whisper [21].
Five out of the 15 linguistic features, extracted with the BlaBla
toolkit [22], capture the lexical diversity or the use of fillers
(content density, idea density, Honore statistic, Brunet index,
type-token-ratio, and discourse marker rate). Four features cap-
ture the coherence using cosine similarity between sentence em-
beddings [23] of consecutive sentences. Two features capture
the use of ambiguous pronouns, by computing the ratio of the
number of referenciation chains that start with a 3rd person pro-
noun. The referenciation chains were computed with the model
proposed in [24]. Finally, one feature captures the use of first
person pronouns. Regarding acoustic features, we used Praat
(using the python package praat-parselmouth) and openSMILE
[25] (eGeMAPS configuration [26]). We consider 17 features
that capture speech-rhythm information (e.g. articulation rate,
speech rate, and average syllable duration), 32 features to cap-
ture voice quality (e.g. F0, jitter and shimmer features), and 20
features that capture the vocal tract shape (formant features).

3.2. Reference population

For selecting the corpora for the reference population, we took
CLAC, a dataset collected on purpose to serve as a speech cor-
pus of healthy English speakers and two other corpora totally
unrelated to the study of diseases from speech: TIMIT and
VOXCELEB. The criteria for choosing the last two corpora was
the availability of gender and age information.
CLAC includes speech from 1,832 speakers almost all located
in the USA, recruited via a crowdsourcing platform. The sub-

1Code available at https://github.com/mcatarinatb/
reference-speech-characterization.

Table 1: Number of audio files (F) and speakers (spk) per
speech task and dataset, by gender and age range.

CLACpicture CLACread CLACvowel TIMIT VoxCeleb All
F Spks F Spks F Spks F Spks F Spks F Spks

M <50 1041 740 1478 763 761 761 415 415 851 287 4546 1489
M ≥50 129 97 199 104 97 97 13 13 686 193 1124 312

F <50 1061 742 1504 757 739 739 181 181 794 277 4279 1216
F ≥50 183 137 273 137 137 137 10 10 277 90 880 241

All 2414 1716 3454 1761 1734 1734 619 619 2608 826 10829 3237

sets of the corpus used in this study include two read passages,
two picture description task (Cookie Theft picture and a pic-
nic picture, typically used in the diagnosis of cognitive im-
pairment), and a sustained vowel /a/ from each speaker that
claims to have no health-related symptoms that might affect
their speech.
TIMIT contains speech from 630 native speakers of Ameri-
can English each reading 10 phonetically-rich sentences. The
speakers were screened by a professional speech pathologist.
One subject was excluded for lack of age information.
VoxCeleb includes short clips from interviews uploaded to
YouTube. A subset of VoxCeleb contains annotations with age,
gender, and nationality [27]. In this study, we included only the
840 subjects with available age information, that were from the
USA, to avoid the interviews that are not spoken in English.

In VoxCeleb and TIMIT, we concatenated several turns
of each participant, such that each audio segment would have
roughly one minute of audio. In the reference data, we
have five pairs of dataset–task: CLAC–read speech, CLAC–
picture, CLAC–vowel a, TIMIT–read speech, and VoxCeleb–
interview segments. Both CLAC–picture and VoxCeleb–
interview segments are examples of spontaneous speech, but
still different tasks. In this document, to distinguish between the
sustained vowels and all other speech tasks, we refer to vowel-
and sentence-based tasks. It is also important to mention that
the linguistic features will only be analysed in the context of
the picture description and not the interview segments, nor any
other tasks. The reason for this is that the segments are only
short snippets of the interview, concatenated together, without
enforcing any consecutive order, or any meaningful linguistic
content. For the vowel task, we will use only the acoustic fea-
tures, excluding speech-rhythm based features.

Outlier Removal
After extracting the features, we performed outlier removal us-
ing the Mahalanobis distance, and the Minimum Covariance
Determinant estimator to determine the covariance matrix. Data
samples with a Mahalanobis distance higher than a threshold,
defined using the interquartile range method, were considered
outliers. We only used a subset of 34 acoustic features for this
analysis, to avoid considering features that were expected to be
highly correlated. The outliers for the vowel task were esti-
mated separately from the sentence-based tasks. This outlier
removal method excluded a total of 464 (60 vowels and 404 of
the sentence-based) samples, out of the original pool of 11,293
audio samples. Table 1 shows the number of audio files and
speakers in each speech task and dataset, after outlier removal.

Partitioning the reference population
Most features in the feature set are strongly impacted by differ-
ent factors, which may include the speech task, noise, recording
conditions, and speaker dependent factors, such as gender, age,
body mass index, education, smoking habits, etc. Because we
do not have information on all these variables, in this work we
focus on gender and age which are the most important variables
to consider for RI estimation [28]. We also explore the impact
of speech tasks and source dataset. Thus, to determine whether
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we should partition the reference population data to define dif-
ferent RIs, we formulate the following questions:
• Q1: Is there a statistically significant difference between the

speech features of male and female speakers, that justifies
estimating different RIs for each gender group?

• Q2: Is there a statistically significant difference between the
speech features of speakers at different age ranges, that justi-
fies estimating different RIs for each age range?

• Q3: Is there a statistically significant difference between the
speech features extracted for different speech tasks?

• Q4: Is there a statistically significant difference between
speech features of two dataset, that would impede combin-
ing two datasets under the same RI?

To answer these questions, we perform a Mann-Whitney U
test that evaluates whether the two subgroups are likely to be
derived from the same population (null hypothesis). For a p-
value < 0.01, we rejected the null hypothesis, i.e., we conclude
the two subgroups are not likely to be derived from the same
population, and thus distinct RIs should be derived for the two
subgroups. In Q2, we simplified the problem to two age ranges:
subjects below 50 years old, and subjects with 50 years or more.
We acknowledge that this analysis should be carried with finer
age ranges, but such analysis was not possible considering the
size of the reference population, namely for the older subset.

3.3. Computing reference intervals

If the underlying distribution of the data is Gaussian, the RI
corresponds to the mean± 1.96× std, in which std stands for
standard deviation. If such assumption cannot be made, which
is frequently the case for the studies of RI estimation, either
data must be first transformed to a Gaussian distribution, e.g.
using a Box-Cox power transformation, or a non-parametric es-
timation can me made. In the case of a non-parametric estima-
tion, the limits of the RI correspond to the 2.5th and 97.5th per-
centile [29]. [29] found that both the non-parametric approach
and the power transformation of data followed by the paramet-
ric approach provide similar results, and the non-parametric
method is recommended by [30]. Thus in this work, we chose
the non-parametric approach. To provide a confidence measure
on the estimated RI, we derive 99% confidence intervals (CIs)
for both the lower and upper limits of the RI via boostrapping.
Data was resampled 1000 times to estimate the CIs. If the CI
for any of the reference limits is larger than 20% of the RI, then
the RI is not considered valid. After the bootsrapping, we fixed
each RI as the outer bounds of the CI.

3.4. The diseased population

After defining the RIs for the reference population, we compare
them to data from two datasets designed for disease detection:
DementiaBank, for the analysis of AD and depression. In this
English corpus, also known as Pitt corpus [18], each speaker de-
scribes the Cookie Theft picture (we removed the interviewer’s
turns). The DementiaBank contains several annotations, includ-
ing different forms of dementia and depression. In this study, to
define the subjects with AD, we relied on the ”Probable AD”
tag; and to define the subjects with depression we used the
Hamilton scale (depressed for a value ≥ 8) [31]. Thus, we de-
fine four subgroups: control subjects, subjects that suffer from
AD but not depression, subjects that suffer from depression but
not AD, and subjects that suffer from both AD and depression.
PC-GITA, the Parkinson’s disease Corpus from the Ap-
plied Telecommunications Group at Universidad de Antioquia,

Table 2: Number of features with p-value ≥ 0.01 in the Mann-
Whitney U test applied to questions Q1-Q4.

Q1 Q2 Q3 Q4 Q4–dataset normalization

Total feature count 84 84 69 69 69

features with
p-value ≥ 0.01

All 15 – – – –

Female – 57 24 12 65
Male – 58 22 9 65

F & M – 41 17 4 64

Colombia (PC-GITA) [19], for the analysis of PD. This corpus,
fully spoken in Spanish, includes recordings of 50 PD patients
and 50 controls matched by age and gender performing several
speech tasks. To allow a fair comparison with RI determined
for English, in this work we only explore the enunciation of a
sustained vowel /a/ (three repetitions per subject).

To allow the comparison of the disease datasets to the esti-
mated RIs, we normalize each dataset separately. However, we
use only the controls subjects to fit the scaler. Table 3 shows
the number of audio samples in each dataset, per diagnosis and
gender group.

4. Results
Partitioning the reference population: The results for the
analysis on how to partition the RIs are summarized in Table
2. A detailed description follows below.

To answer Q1, we analyse data for a single speech task from
a single dataset, to minimize other potential sources of variabil-
ity: CLAC–picture description. After normalizing data with 0-
mean and unit variance, we compute the Mann-Whitney U test
between male and female individuals, and conclude that there
is no need to partition the RI for only 15 out of the 84 features.
These 15 features are mostly linguistic (8), but also rhythm-
related (5), and F0-related (falling slope, and max F0). Given
that for the majority of the features, the recommendation is to
partition, henceforth, we always compute two separate models:
one for each gender, each normalized separately.

Regarding Q2, we observe that we can combine the data of
both age ranges to estimate one single RI for 57 and 58 fea-
tures, in the subpopulation of females, and males, respectively.
The intersection of the subgroups of features that passed the
test correspond to 41 features. Nevertheless, considering that
partitioning by age after partitioning by gender would result in
small sample sizes for each group (often smaller than the 400
subjects suggested in the guidelines), in this pilot work, we opt
to not partition the data according to age.

To investigate Q3, we compare CLAC–picture description
and CLAC–read speech, normalizing all data simultaneously.
Note that we excluded the linguistic features from this analysis.
We observe that we could only keep the subpopulations together
for 17 out of the 69 features. Thus, we will keep the analyses of
different speech tasks separate.

Regarding Q4, we compare TIMIT–read speech and
CLAC–read speech, normalizing all data simultaneously. In
this scenario, we could compute the RIs using all data together
for only 4 out of the 69 features. This would mean that we
could not employ the RIs estimated with one dataset to unseen
datasets, even under the same gender and speech task. To tackle
this, we perform dataset-dependent normalization. With this
approach, we make the distributions of the two subgroups more
similar, and thus can assume that the samples come from the
same distribution for 64 out of the 69 features.

In summary, we conclude that we need to estimate different
RIs for each gender, and each speech tasks. To combine differ-

2365



Figure 2: Radar plot with normalized RIs for female speakers.
/a/ – vowel /a/; RS – read speech; IntS – concatenated interview
segments of voxceleb ; Picture – picture description only.

Table 3: (i) Number of audio samples. (ii) Average number of
features outside of the RIs, per sample. (iii) [%] of samples with
0 features outside the RIs. Dep – depression.

(i) #samples (ii) #features out of RI (iii) [%] samples

Female Male Female Male Female Male
C D C D C D C D C D C D

PD 75 75 75 75 2.1 6.2 2.3 4.3 37.3 6.7 44.0 24
AD 77 84 46 46 4.3 5.8 3.8 7.2 11.7 2.4 8.7 0
Dep 77 3 46 7 4.3 1.3 3.8 4.3 11.7 0 8.7 0

Dep+AD 77 45 46 18 4.3 5.8 3.8 5.9 11.7 2.2 8.7 0

ent datasets under the same RI, we perform dataset-dependent
normalization. This is consistent with results described in [32].
However, even under dataset-dependent normalization, 5 out of
the 69 features could not be combined, and thus were excluded
from further analysis.

These are simplifying assumptions, that we believe to be
reasonable in this proof-of-concept exploring the feasibility of
defining RIs for speech. Future work should not only study
a larger reference population, but also consider other methods
for partitioning the RIs, such as the Lahti criteria [33], or the
Ichiahara method [29, 34].

Reference intervals: Figure 2 shows the normalized RIs for all
features, for female speakers, as an example. Each region cor-
responds to a speech task. The light green shows the RI, while
the dark green shows the mean. A similar plot was derived for
male speakers. For 12 features, the RI was considered invalid
because the confidence interval on at least one of the reference
limits was larger than 20% of the RI estimated. Thus, those fea-
tures were excluded from the analyses. This resulted in a total
of 247 speech features.

Comparing RIs with datasets for disease detection: Figure
3 shows the overlap of all female subjects in the disease cor-
pora over the RIs. Each colored line corresponds to one audio
sample. Lines with a stronger intensity correspond to the su-
perposition of multiple samples on top of each other. The fig-
ures compare control samples to disease samples separately. By
visually inspecting PC-GITA (top of Figure 3), it appears that
PD samples are more often outside the RIs, than control sam-
ples. The same observation is not so evident for DementiaBank,
when comparing AD patients, or AD+depression patients to
controls. There are only three female patients with depression
only, thus they are omitted from the figure.

Table 3 summarizes the results by reporting (i) the number
of samples under analysis, (ii) the average number of features
outside the corresponding RI, per audio sample, and (iii) the
percentage of samples with no features outside the correspond-

Figure 3: Female controls and patients, over the RIs.

ing RI. The Table shows that the average number of features
outside the RI per sample is higher for patients, than for con-
trol subjects. This observation is verified for all diseases, with
the exception of female depressed subjects. However, given the
very small size of this subset (3), we argue that further analysis
should be conducted. The Table also shows that the percentage
of samples that have no features outside the corresponding RI is
always much larger in controls than in diseased subjects.

The differences between patients and controls are more no-
ticeable in PC-GITA than in DementiaBank. This may suggest
that the task of enunciating a sustained vowel may be more suit-
able for this RI analysis, as it allows less source of variablity. It
is also possible that the noisy recording conditions in Demen-
tiaBank play a strong role.

This tool also enables the identification of features that ap-
pear to be better markers of a disease, and simultaneously still
robust to dataset shifts. Taking the example of PD females vs
Control females (Figure 3 – at the top): there are 16 features
for which more than 95% of the controls stay inside the RI and
less than 95% of the diseased stay inside the RI. Particularly, for
the feature harmonics-to-noise ratio computed with Praat (fea-
ture 25), only 3.5% of controls are out of the RI, compared to
the 41.2% of patients out the RI. There are also 7 features, all
related to shimmer measures, for which less than 5% of the con-
trols fall outside the RI, and over 30% of PDs are out the RI.

5. Conclusions
This work establishes a proof-of-concept for the characteriza-
tion of healthy speech using RIs. In fact, one can think of this
speech analysis as a parallel to the usual blood tests. The radar
plots, and particularly the RIs, appear to be useful for analysing
multiple diseases from different datasets, as they enable the ex-
traction of interpretable information which can guide further
medical follow ups.

Possible future work directions include (i) replicating the
method with a larger reference population, and other relevant
speech tasks (e.g. diadochokinetic evaluation), (ii) exploring
other statistical criteria to decide on RI partitioning, (iii) ex-
ploring alternatives to the dataset dependent normalization for
allowing the comparison of RIs in different corpora, (iv) inves-
tigating how to evaluate the effectiveness of the method for in-
dividuals instead of group data, and (v) further compare the RIs
with different diseases, and different datasets/speech tasks of
the same disease to assess the generalizability of the results.

We believe that the RIs and the radar plot are a starting point
to provide trustworthy and explainable insights to the use of
speech as a biomarker for multidisease screening.
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