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Abstract

Study of the vocal movements of beatboxing can benefit speech
science in a number of ways; but while there are established
models of speech motor control that make deterministic predic-
tions about vocal kinematics, little is known about beatboxing
motor control. A region of interest method was applied to real-
time MRI videos of beatboxing Kick Drums to measure the time
to peak velocity—a measurement that is used to assess how well
models of speech action predict actual movement trajectories.
The average time to peak velocity for Kick Drums is about half
of the way (58%) through the total movement duration, similar
to the times to peak velocity reported for speech actions. How-
ever, while the times to peak velocity for Kick Drums tend to be
just above 50%, the times to peak velocity reported for speech
sounds are usually a bit below 50%. Further study is needed to
assess whether this difference reflects a more extreme constric-
tion goal or a qualitatively different movement pattern.

Index Terms: speech production, human beatbox

1. Introduction

Beatboxers are known for pushing the sound-making potential
of the vocal tract to its limits; they create music from a wide
variety of vocal sounds, many of which manipulate airflow in
ways that are unattested in speech. Research on beatboxing re-
veals more about the physical capabilities and limitations of the
vocal tract, and this in turn may provide valuable information
for speech science [1, 2]. Learning how the vocal tract is used
by a complex, hierarchical non-speech system like beatboxing
provides context for understanding how linguistic sound sys-
tems develop and evolve. Speech can also be compared to beat-
boxing directly in order to learn how much of speech motor
control is domain-general (cognitively bound to and unique to
the speech system) and how much is shared with other domains
like beatboxing.

An outstanding question in beatboxing science is how to
model the kinematics of beatboxing sounds, and how those
kinematics compare to the kinematics of similarly articulated
speech sounds. Common beatboxing sounds like Kick Drums,
Closed Hi-Hats, and Inward K Snares use qualitatively similar
constrictions to speech sounds—closures of the lips, the tongue
tip to the alveolar ridge, and the tongue body to the velum,
all followed by explosive releases of air pressure [3, 4]. But
whereas the literature on speech motor control has a somewhat
comprehensive story for the kinematics of speech sounds, lit-
tle is currently known about how the vocal tract moves when
creating beatboxing sounds. Anecdotally, beatboxing sounds
are sometimes thought to be more forceful than speech sounds,
a trait which may arise from more rapid movements or larger
degrees of compression than speech sounds use. To our knowl-

edge, however, no work has been done assessing whether the
beatboxing kinematics are different at all from speech kinemat-
ics.

A better understanding of beatboxing vocal kinematics may
have both applied and theoretical consequences. Beatboxing is
a promising tool for speech therapy [5, 6]. Because some of the
basic sounds of beatboxing use the same constrictors (i.e., the
lips, tongue tip, and tongue body) and constriction degrees (i.e.,
full closures) as common speech plosives, the motor control for
beatboxing sounds may transfer across domains to speech re-
sulting in stronger speech plosives. More details about how
beatboxing movements compare to speech movements could
offer the basis for more targeted and effective therapeutic in-
terventions.

Knowing beatboxing kinematics provides the foundations
for a theory of beatboxing motor control. In the framework of
Tasks Dynamics [7], for example, constrictions in the vocal tract
are posited to be governed by differential equations taking the
form of point attractors—dynamical systems with a single spa-
tial target, such as a labial closure for a spoken [b] or a narrow
constriction of the tongue tip at the alveolar ridge for [z]. These
equations have directly observable consequences in the vocal
tract: different parameters for the equation yield differences in
where the vocal articulators move and how quickly they move
at any moment in time (their velocity profile).

In fact, even the literature for speech sounds has not set-
tled on which differential equation is appropriate for speech
actions. The original task dynamics equation for a critically-
damped mass-spring system is given in Equation 1.

i4bi+kr=0 1)

where

b=2Vk 2)

It predicts that the peak velocity of a vocal tract closure
controlled by a gesture will be achieved near the beginning of
the gesture’s activation (Figure 1), but this is inconsistent with
articulatory evidence demonstrating that the time of peak ve-
locity is approximately halfway through a gesture’s activation.
Alternatives have been suggested which ramp the activation of
a gesture [8] or introduce a soft spring term into the equation
[9] (Equation 3 depicted in Figure 2), both of which delay the
time of peak velocity closer to the midpoint.

&+ bi + kx — dz® = 0. 3)
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Kinematics of critically-damped mass-spring point attractor
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Figure 1: Position and velocity for a critically-damped mass-
spring system (Equation 1). The horizontal dotted line indicates
20% of the peak velocity.
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Figure 2: Position and velocity for a mass-spring system with
a soft spring (Equation 3). The horizontal dotted line indicates
20% of the peak velocity

Beatboxing sounds could likewise be modeled using dy-
namical point attractors, and this model could be used to predict
how more complex beatboxing sounds and patterns will mani-
fest just as extensions and alternatives to Task Dynamics are
used to predict how multiple overlapping speech units unfold
in time. A prerequisite for such a model of beatboxing is basic
kinematic data that can be used to evaluate which differential
equation provides the most accurate description of how a beat-
boxing action is performed.

The broader theoretical question is why speech actions have
the control schemes they have. Why these specific point at-
tractors? In Articulatory Phonology [10, 11], the differential
equations of Task Dynamics are hypothesized to play the role
of phonological gestures: action units that do double-duty as
abstract phonological units and concrete articulatory control
mechanisms. In this hypothesis, gestures are the result of a dy-
namical interplay between the communicative tasks of speech
and forces of motor efficiency (among other things). But be-
cause speech actions are rarely compared against vocal non-
speech actions, it is unclear how much the nature of the core dy-
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namical equation is the result of communicative forces or other
forces. Is it particularly advantageous for a vocal action to reach
its peak velocity halfway through its movement as opposed to
later or earlier, or is this simply a property of all vocal point
attractors both in speech and out? A fuller accounting of beat-
boxing kinematics would be the sort of data that could be used
to address this question.

The aim of this paper is to begin filling gaps in knowledge
about beatboxing kinematics by measuring the time to peak ve-
locity of beatboxing Kick Drums——one of the most fundamen-
tal and frequently used beatboxing sounds.

2. Method
2.1. Data acquisition

The data in this study come from a single expert beatboxer, a
subset of a larger data set. Two novice beatboxers, one inter-
mediate beatboxer, and two expert beatboxers were asked to
produce beatboxing sounds in isolation and in musical rhythms
(“beat patterns”), and to speak several passages while lying
supine in the bore of a 1.5 T MRI magnet. Skill level desig-
nations were given by the intermediate beatboxer who had also
contacted the beatboxers, was present for the collection of their
data, and provided a beatboxer’s insight at several points in the
earlier stages of analysis. All participants were cognizant of
the nature of the study, provided written informed consent, and
were scanned under a protocol approved by the Institutional Re-
view Board of the authors’ home institution. Of those five beat-
boxers, the productions of just one expert are reported in the
present study. The two novices and the intermediate beatboxer
are not discussed because the aim of this paper is to characterize
expert beatboxing, not beatboxing acquisition. (See [12] for an
overview of how these beatboxers of different skill levels dif-
fer.) Data from the second expert beatboxer are not reported
because the beatboxer exhibited large head movements during
image acquisition, making kinematic analysis using the region
of interest method described below impractical. The beatboxer
studied here reported being a monolingual speaker of English.
The beatboxer was asked in advance to provide a list
of sounds they know written with orthographic notation they
would recognize. During the scanning session, each sound la-
bel they had written was presented back to them as a visual
stimulus. For each sound, the beatboxer was asked to produce
the sound three times slowly and three times quickly, and then
to produce the sound in a beat pattern (sometimes referred to
hereafter as a “showcase” beat pattern). The beatboxer was also
invited to perform beat patterns of their choosing that were not
meant to showcase any particular sound. This beatboxer pro-
duced over 50 different showcase or freestyle beat patterns.
Data were collected using an rtMRI protocol developed for
the dynamic study of vocal tract movements, especially during
speech production [13, 14]. The subjects’ upper airways were
imaged in the midsagittal plane using a gradient echo pulse se-
quence (TR = 6.004 ms) on a conventional GE Signa 1.5 T
scanner (Gmax = 40 mT/m; Smax = 150 mT/m/ms), using an
8-channel upper-airway custom coil. The slice thickness for the
scan was 6 mm, located midsagittally over a 200 mm x 200 mm
field-of-view; image size in the sagittal plane was 84 x 84 pix-
els, resulting in a spatial resolution of 2.4 x 2.4 mm. The scan
plane was manually aligned with the midsagittal plane of the
subject’s head. The frames were retrospectively reconstructed
to a temporal resolution of 12ms (2 spirals per frame, 83 frames
per second) using a temporal finite difference constrained re-



Figure 3: The closure of a Kick Drum in the region of interest.

construction algorithm [14] and an open-source library (BART).
Audio was recorded at a sampling frequency of 20 kHz inside
the MRI scanner while the subjects were imaged, using a cus-
tom fiber-optic microphone system. The audio recordings were
noise-canceled, then reintegrated with the reconstructed MR-
imaged video [15]. The result allows for dynamic visualization
and synchronous audio of the performers’ vocal tracts.

2.2. Measurements
2.2.1. Pixel intensity time series from region of interest

Time series for lip aperture were created from rtMR video pixel
intensities using a region of interest method [16, 17, 18, 19]. A
region distills the intensities (brightnesses) of all the pixels it
contains into a single mean intensity value. In a video, the re-
gion of interest is static but its average pixel intensity changes
frame by frame; assembling the frame-by-frame intensity aver-
ages into a list creates a time series. With a well-placed region
at the lips, changes in average pixel intensity reflect changes
in lip aperture: decrease in lip aperture means that the tissue
of the upper and lower lips move towards each other and fur-
ther into the region of interest, thereby increasing the region’s
overall pixel intensity. The region in this study was manually
sized so that the upper and lower lip were just outside the re-
gion at their widest aperture (11 pixels tall, 26.4 mm) and so
that the region was wide enough to include the full width of the
lips during bilabial closures (7 pixels wide, 16.8 mm). Figure 3
shows the closure for a Kick Drum inside the region of inter-
est. The position (but not the size) of the region was adjusted
for some videos to account for head movement that occurred
between videos during data acquisition.

The pixel intensity time series were low-pass filtered us-
ing a second-order butterworth filter with a cutoff frequency of
14 Hz (33% of the Nyquist sampling frequency, 41.5 Hz) run
over the data from left-to-right and from right-to-left. Visual
inspection concluded that this filter rendered a time series with
similar values to the unfiltered intensity and velocity time series
while smoothing out higher frequency noise (mean Pearson’s
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r=0.9993 for intensity time series; mean Pearson’s r=0.983 for
velocity time series).

2.2.2. Acoustic landmarks for each Kick Drum

All beat patterns were manually transcribed into a representa-
tion of musical meter by the author based on repeated audiovi-
sual inspection. These transcriptions were used as the basis for
labeling events in the acoustic signal captured simultaneously
with the rtMR video acquisition. An acoustic event was found
for each Kick Drum’s release burst using MIR Toolbox (v1.7.2)
[20, 21]. Each audio recording was inspected and manually cor-
rected if MIR toolbox found too many or too few acoustic events
for a sound, ultimately resulting in a single acoustic time point
for each Kick Drum. These events were stored as points on a
Praat PointTier [22] and parsed automatically with mPraat [23].
The time of each acoustic event was used as the starting point
for searching the pixel intensity time series for changes in lip
aperture related to a Kick Drum.

2.2.3. Automatic kinematics extraction

Each sound’s acoustic event was used as the basis for automat-
ically finding kinematic moments of interest for a bilabial clo-
sure using the DelimitGest function [24] and subsequent auto-
matic corrections. The moments of interest were the time of a
local velocity maximum, the time of movement onset, and the
time of movement offset. The time of velocity maximum cor-
responds to the time at which the lips are moving the fastest
toward each other; it was found as the moment nearest to the
acoustic event of the sound when pixel intensity in the region
exhibited the fastest increase. Onset of movement was found
where slope of the pixel intensity time series reached 20% of
the peak velocity before the local velocity maximum; this cor-
responds to a time just after the lips have reached a velocity
minimum, either because they have switched from opening to
closing or because their movement paused for another reason.
The same 20% threshold was used to find movement offset af-
ter the local velocity maximum, which corresponds to the time
shortly before maximum bilabial compression. The time to
peak velocity was calculated as the ratio of the duration from
time of movement onset to time of velocity maximum and time
of movement onset to time of movement offset.

There are several types of Kick Drums in beatboxing, but
the ones in this study were limited to the most common vari-
ety sometimes known as Classic or “Forced” Kick Drums (B in
Standard Beatbox Notation [25, 26]). Articulatorily, this means
they were bilabial ejectives [p’]. In this paper, the term “Kick
Drum” refers only to this specific type of Kick Drum. To min-
imize the influence of coarticulation, a Kick Drum token was
excluded from the analysis if it was co-produced with another
sound on the same metrical beat, metrically adjacent to another
sound, or observed in post-hoc visual inspection to begin from
the release of a bilabial constriction from another sound. In to-
tal, 105 Kick Drums produced across 23 showcase beat patterns
met these criteria for analysis. Of these, five were not tracked
properly by the automatic constriction-finding algorithm and
were excluded. Another sixteen were excluded because they
were found to have more than one local velocity maximum.
This left 84 Kick Drums in the analysis.

3. Result

The pixel intensity time series and associated velocity time se-
ries for each labial closure are shown in Figure 4. Red dots
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Figure 4: Pixel intensity (a proxy for aperture) and change in
pixel intensity (velocity) for all Kick Drums. Red dots indicate
the time of peak velocity for each Kick Drum token.
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Figure 5: Histogram of times to peak velocity for all Kick Drum
tokens.

on the velocity time series denote the normalized time of peak
velocity for each velocity time series. The overall trend of the
curves resembles the velocity trajectory in Figure 2, with most
peak velocities between 40% and 70% of the vowel.

Figure 5 shows the distribution of normalized times to
peak velocity. On average, peak velocity was achieved 58.8%
through the vowel (median=57.1%, mode=66.7%). This indi-
cates that, like the reports for speech data in the literature, the
lip closures for Kick Drums are roughly symmetrical insofar as
the time of peak velocity is achieved roughly halfway through
the time course of the closure.

Figure 6 demonstrates the relationship between movement
magnitude and peak velocity: as the magnitude of movement
increases, the peak velocity also increases. Sorensen & Gafos
[9] argue that while the critically-damped mass-spring system
without a soft spring (with or without ramped activation) pre-
dicts a fully linear relationship between movement magnitude
and peak velocity, the autonomous equation with a soft spring
predicts a nonlinear relationship in which peak velocities in-
crease more slowly at higher magnitudes. Assessing whether
a distribution has a nonlinear relationship is complicated, but
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Figure 6: Scatter plot of constriction magnitude (the overall
change in brightness from movement onset to movement offset)
against peak velocity (the maximum frame-to-frame change in
brightness for each trajectory).

at a glance the relationship appears fairly linear except perhaps
for the peak velocities with magnitude > 3 which may be a bit
lower than predicted by a linear relationship. More data with
larger closure magnitudes would be needed to examine this fur-
ther.

4. Discussion

The time to peak velocity measurement of 58% indicates that
Kick Drum closures are roughly symmetrical in time: they start
slow, increase in speed until about halfway through the sound,
then slow back down until the constriction target is achieved.
This velocity profile is consistent with the kinematics gener-
ated by a differential equation with a soft spring (Equation 3,
Figure 2). This is also consistent with the literature for speech
movements, indicating that the Kick Drum has a similar move-
ment profile to at least some speech sounds.

The reports in the literature are that times to peak veloc-
ity are approximately symmetrical, but usually still earlier than
the actual halfway point of the closure. In the most compara-
ble case, Byrd & Saltzman [8] report times to peak velocity for
labial closures of a bit under 50%, but other findings for speech
closures also report times to peak velocity slightly earlier than
halfway. The Kick Drum times to peak velocity, on the other
hand, are somewhat later—often 50% or greater.

The fact that the peak velocities are a bit after 50% could
indicate the same basic time course as a speech gesture but with
a more extreme compression target. In that case the pixel inten-
sities may not register the full magnitude of the compression,
which could cut off the movement early—thus making the time
of peak velocity later in proportion to the measured movement
duration. The Kick Drums could be said to be “forceful” insofar
as they have closures caused by a goal for strong compression;
however, it is not clear from this study whether that compression
is any tighter than the compression for bilabial stops in speech.
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