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Abstract
Advancements in speech technology have led to the integra-
tion of modern ASR systems into various applications such as
chatbots, medical dictation, video transcription etc. Conversa-
tional ASR training requires speech that captures the acoustic
cues of spontaneous speech. With its 30k hours of conversa-
tional speech, the People’s Speech corpus is the largest avail-
able spontaneous and conversational corpus and an invaluable
resource for such training. In addition, it comes with a com-
mercial friendly license. The corpus is packaged in uniform
15-second segments, but this can lead to abrupt cutting off of
speech and transcription that is not always accurate. This paper
presents an effective method for automatic data mining from
a small subset of 973 raw original records used by the Peo-
ple’s Speech corpus. The paper also proposes an approach for
outlier detection and automatic data curation. Results show a
19.7% relative improvement in WER compared to the original
segments.
Index Terms: ASR, wav2vec2, People’s Speech, Data curation

1. Introduction
In recent years, advancements in deep learning technology have
enabled the development of highly accurate Automatic Speech
Recognition (ASR) systems that can recognize speech across
various domains, accents, speakers, and environments. How-
ever, the community is working to improve ASR technology
even further for efficient conversational AI. To develop an effi-
cient ASR model suitable for conversational AI, we need high-
quality training data that comprises conversational and sponta-
neous speech from diverse environments and a wide variety of
speakers. However, most of the large corpora available today,
such as MLS [1], Librispeech [2], and CommonVoice [3], con-
sist of read speech that lacks spontaneous speech properties. To
train a good conversational ASR model, it is important to use
spontaneous speech that includes fast speech and hesitations.
While Whisper [4] has shown the potential of using 600K hours
of semi-supervised data for ASR, it is not feasible for startups
and academia to use such a large volume of data. Therefore, it
is important to focus on the quality of the training data rather
than the volume.

To the best of our knowledge, the Gigaspeech [5] and Peo-
ple’s Speech [6] corpora are the only large-scale conversational
and diverse speech corpora that contain 10K and 30K hours of
speech, respectively. These two corpora are valuable training
resources, but People’s Speech alone is available both to com-
mercial applications and to the research community. However,
People’s Speech transcription is not always accurate. First, it is
packaged in uniform 15-second segments, which often abruptly
truncate speech at the boundaries, leading erroneous transcrip-

tion at those points. This is also not ideal to train an ASR on
fixed chunked width, as this may have an adverse effect on rec-
ognizing short or single-word audio, especially for end-to-end
ASR. Second, the transcriptions provided with the corpus are
not always reliable and were often generated using pre-trained
ASR models. We’ve also noticed that many segments contain
non-English speech or music, resulting in incorrect alignments.
Therefore, there is a lot of room for improvement in terms of
transcript quality, including deploying new state-of-the-art ASR
models and exploring resegmentation techniques to create cor-
pora with variable segment lengths.

In this paper, we present an alternative solution to the time-
consuming and expensive process of curating large-scale data
by human experts. Instead, we propose to discard the People’s
Speech transcriptions and to recreate the data from the original
archive.org records, which were used to create the distributed
corpus. Our method involves a pipeline that automatically re-
segments and retranscribes the raw audio data. The process in-
cludes transcription, punctuation, segmentation from the said
punctuation, frame-level alignment of segments, retranscription
of updated segments, final alignment from the latest transcrip-
tion, and final resegmentation based on silences. We demon-
strated the effectiveness of this process on a subset of 973 raw
audio archives (of 55 minute length in average), sourced from
archive.org. Although our pipeline employs in-house models
(for better control and accuracy in downstream tasks such as
word-level timestamp calculation), the same process could be
deployed only with open-source models, and used on a large
scale. To the best of our knowledge, this is the first attempt
to recreate this data set with improved quality using a standard
CPU machine.

In addition, we propose a solution to data curation by lever-
aging automatic outlier detection and curation based on the
wav2vec2 model [7, 8]. First, we use an in-house model to
calculate the alignment loss [9] of the given transcription and
thereby detect any possible outliers. Then we introduce a third-
party pre-trained model (curator) to further curate those outliers
based on their connectionist temporal classification (CTC) [10]
loss value. Our strategy demonstrates the potentiality of au-
tomatic segmentation and curation in improving the quality of
large-scale speech data.

2. People’s Speech corpus
The People’s Speech dataset is a public dataset that includes
diverse sources of speech beyond audiobooks, such as movies,
TV, local news, sports commentary, music, historical documen-
taries, video game replays, and many more domains, along with
said ground-truth transcripts from subtitles. However, these
transcripts may not always be reliable, as they may not be
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Figure 1: People’s Speech re-segmentation and re-transcription pipeline

created by human experts and may contain translations, sum-
maries, or notes instead of the actual speech in the audio. The
corpus creation process involves automatic transcription with
word-level timestamps, segmentation into 15-second uniform
segments, forced alignment, and verification. Based on vali-
dation assumptions that include analyzing character error rate
(CER) and word error rate (WER) with respect to ground truth
transcriptions, the entire People’s Speech dataset is subcatego-
rized by authors [6] into three parts: 10K hours of gold quality,
7K hours of high quality, and 14K hours of low quality. How-
ever, we believe that using WER/CER as a measure of quality
is not always reliable unless the text is perfectly normalized and
the ground truth is accurate.

In the following sections, we will present our solution for
producing better quality segments of varying lengths by utiliz-
ing audio files from archive.org, which were used in the creation
of the People’s Speech corpus.

3. Segmentation and Transcription Pipeline
The pipeline involves both in-house and third-party models.
We used in-house models for the initial transcription and final
alignments, while we used third-party models from Nemo [11]
for the remaining tasks. However, the in-house models can be
substituted with third-party models, such as Whisper or Nemo
models that are well suited for the task. We opted for third-
party models for the final transcription to prevent any bias in
future model training and testing on this new data. The process
is illustrated in Figure 1.

3.1. Initial long audio transcription

To begin with, we employed an in-house model to obtain the
initial transcription for a long audio file. We decided to use au-
tomatic transcription as provided transcription is not enough re-
liable. After transcription, we used a pre-existing tool to restore
punctuation1 and divided the transcript into sentences or speech
sections. These sections were used as input for the next step
(CTC alignment). This was to have better cut between words,
ideally during silences that appear after a comma or period, but
also to ease the alignment on short segments. As the initial
transcription generated by the ASR system had already been
normalized i.e spoken form, text normalization process was not
required.

3.2. CTC forced alignment and Segmentation

This stage of the pipeline utilizes CTC-segmentation [9], an al-
gorithm that extracts appropriate audio-text alignments in the
presence of unknown speech sections at the beginning or end
of the audio recording. The algorithm utilizes a CTC-based
end-to-end network that is trained on pre-aligned data. For this

1https://github.com/oliverguhr/
deepmultilingualpunctuation

task, we used the Nemo citrinet model2 [12], which is faster and
uses less memory compared to other models such as conformer-
based models based on our experience. Based on the align-
ment score (-10), we selected the audio segments that were
passed on to the next stage in the pipeline for more accurate re-
transcription. The duration of the audio segments ranged from
a few seconds to one minute.

3.3. Re-transcription and word-level alignment

The final transcription of each speech section was obtained by
using the Nemo conformer-CTC model3, followed by calcu-
lating word-level timestamps. The choice of conformer-CTC
was based on its reported higher accuracy compared to Citrinet
model, as well as our observation of less deletions compared
to the former. The conformer model also has reasonable speed
and memory consumption for short audio segments. The output
of this stage was the final transcription and its corresponding
word-level timestamps for each speech section.

3.4. Creation of final segments

In the final step of the pipeline, several rules were followed to
create “better final segments”, splitting too long ones using the
time-stamp information and utilizing available silences at the
boundaries. These rules include:

1. Creating a list of segments from the word level timestamp.
The minimum pause of 200 ms was allowed between each
segment.

2. Splitting segments to conform to a maximum number of char-
acters per segment (200) and the maximum allowed duration
(15 seconds).

3. Looking for silences between two consecutive segments. If
there is enough silence (more than 1000 ms), adjusting the
segment start and end boundaries to keep only 800 ms of si-
lence at the start and/or end.

The final step was to dump segmented WAV files along with
their corresponding transcriptions. At last, we ended of with
543 hours of data (204K records) obtained from 973 raw au-
dio files, and entire process took us approximately three days
to complete on machine equipped with an Intel Xeon processor
containing 104 CPUs @ 2.00GHz. The process did not involve
a GPU, and we can anticipate a significant speed boost by uti-
lizing a GPU.

4. Automatic outlier detection and curation
The forced alignment method discussed in section 3.2 can gen-
erate precise alignments between provided transcripts and audio
snippets. However, spontaneous speech, which includes slips
of the tongue and stutters, can complicate the transcription and

2https://huggingface.co/nvidia/stt_en_
citrinet_1024_gamma_0_25

3https://huggingface.co/nvidia/stt_en_
conformer_ctc_large
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Figure 2: Automatic curation pipeline

alignment process. Any ASR systems used for re-transcription
are error-prone, and depending on the quality of data on which
they were trained, or the normalization applied on these data,
they may make recurring errors that will then be learned by our
final model. As a result, downstream errors can occur when
the transcript differs from what is actually said, making the data
noisy and unsuitable for acoustic training. Detecting outliers
can help improve data quality. In this section, we demonstrate
how we use CTC alignment loss to identify possible outliers
and curate them using another third-party model, based on a
loss threshold. The process is illustrated in Figure 2.

We implemented a validator model to compute CTC pre-
diction matrix for the newly created segments, and we calcu-
lated the CTC loss with respect to the new transcription. Seg-
ments with high loss values were considered outliers, as they
differed considerably from the validator model predictions. We
analyzed around 200K newly created segments, and the CTC
loss values are summarized in Table 1. We observed that the
level of disagreement between the reference transcription and
validator could go high when the CTC loss was high, and it
could exceed 1000. We hypothesized that this could be due to
a difficult segment that the model couldn’t predict well or an
erroneous transcription. In the case of an erroneous transcrip-
tion, we attempted to curate it using another model to minimize
the CTC loss. We used Nemo RNN-T model4 as a curator and
applied a loss threshold of 50. We were able to curate 70% of
the records using this strategy.

Table 1: CTC loss calculated by validator
mean std min 25% 50% 75% max

26.22209 34.37976 0.00018 4.35161 13.81459 34.54270 1075.92834

5. Experiments
5.1. Data
We trained six models using various combinations of data, as
shown in Table 2. We used three different versions of People’s
Speech data, each sourced from the same original audio. These
versions are referred to as:
• v1: A subset of the original People’s Speech data, utilized in

Data1 and Data1′.
• v2: The re-segmented and re-transcribed from archive.org,

used in both Data2 and Data2′. Used same audio source from
archive.org which used for v1 in the People’s Speech.

• v3: An automatically curated version of v2, used in Data3
and Data3′.

The table illustrates that we were able to extract approxi-
mately 543 hours of training data for People’s Speech by using

4https://huggingface.co/nvidia/stt_en_
conformer_transducer_xlarge

973 records. By applying automatic curation, we were able to
discard five hours of training data from the re-transcribed train-
ing pool (data2). To make the training set more diverse, we in-
cluded CommonVoice data in our training pool. This was done
to observe the impact of newly segmented and transcribed data
when combined with data from other sources or domains.

We used several publicly available datasets, including ver-
sion 9 of Common Voice [3], financial domain data Earnings-
21 [13], medical data Primock57 [14], and LibriSpeech [2], to
evaluate our models.

Table 2: Data composition used in acoustic modelling

Training
set

Archive (h) CommonVoice
(h)

Total
(h)Resegmented People’sSpeech

Data1 - 538.4 (v1) - 538.4
Data2 543.0 (v2) - - 543.0
Data3 538.9 (v3) - - 538.9
Data1′ - 538.4 (v1) 623.7 1162.1
Data2′ 543.0 (v2) - 623.7 1166.7
Data3′ 538.9 (v3) - 623.7 1162.6

5.2. Acoustic Modelling
In our experiments, we utilized the wav2vec2 model [7] to
transform raw audios into higher-level contextual features or
embeddings via a set of convolutional layers that capture local
features. Then, a proportion of these local features are masked
and sent to a contextual transformer network for predicting the
masked features using contextual information. The model was
trained with a contrastive objective, similar to the BERT [15]
model, which measures the model’s ability to differentiate be-
tween a true masked input segment and a set of distractors. The
self-attention layers in the transformer help encode information
from the context surrounding a given masked segment. We
used the publicly available pre-trained wav2vec25, which was
trained on multiple data sources, including Libri-Light, Com-
monVoice, Switchboard, and Fisher. This model, consisting of
53 languages and 56K hours of speech data, was fine-tuned on
the data described in Table 2 by adding three randomly initial-
ized linear layers to the pre-trained model and then training with
character-level CTC loss [10]. We used a learning rate (LR) of
1e-5 for the wav2vec2 model and a LR of one for the linear
layers. We used Speechbrain toolkit [16] to train the models
for 16 epochs with a batch size of 32, and we used the stan-
dard 27 English characters, including blank. A machine that is
equipped with eight A100 GPUs took an average of 3.5 days to
complete each model. After fine-tuning the model, we decoded
on different test sets to calculate the corresponding WER. We
trained six different models, each with a size of 315 million

5https://huggingface.co/facebook/
wav2vec2-large-robust
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Figure 3: Performance on each test set using different models. The total number of word in each test set is reported in first row

parameters. The first three models, namely M1 (using data1),
M2 (using data2), and M3 (using data3), were trained without
including CommonVoice in the training data. The other three
models, M1′ (using data1′), M2′ (using data2′), and M3′ (us-
ing data3′), were trained with CommonVoice included in the
training pool. The models M1 and M1′ can be considered as
baselines because the People’s Speech data used for training
these models comes from the original distribution.

6. Results & Discussions
ASR performance was evaluated measuring WER on each of
the test set mentioned in section 5.1. The results with the dif-
ferent models are reported in figure 3. The average across WER
is not always reliable to understand the performance as it may
be biased due to the size of each test set. Thus, we report word
weighted average WER (WW Avg) (1st column) and average
WER (Avg) (2nd column).

When comparing M1 and M2, improvements can be seen
across all test sets, including conversational datasets such as
Earnings and Primock57. Specifically, M2 demonstrates a rel-
ative improvement of 12.8% and 20.8% for Earnings and Pri-
mock, respectively, compared to M1. Overall, M2 shows a 17%
relative improvement in WW Avg compared to M1, indicat-
ing the positive impact of re-segmented People’s Speech and
new transcriptions on the acoustic model. The significant im-
provement with the medical test set, i.e Primock, highlights the
potential use of good conversational speech data like People’s
Speech. Effective segmentation allows the model to better learn
using different segment lengths compared to the original uni-
form People’s Speech segments. Similar trends can be observed
when comparing the performance of models M1′ and M2′, with
improvements observed in read and conversation speech data,
including primock data. Specifically, M2′ shows a relative im-
provement of 5% and 10.5% for Earnings and Primock57, re-
spectively, compared to M1′. Overall, a relative improvement
of 6.9% in WW Avg is achieved with M2′ over M1′.

Focusing on the automatic outlier detection and curation
process described in section 4, we can observe that it helps to
reduce the word error rate (WER) even further. When com-
paring models M2 and M3, this process significantly minimize
the WER across the test set, except for Commonvoice. For
the conversational test sets, Earnings and Primock57, there is

a relative improvement of 2.5% and 1.2% with M3 compared to
M2, and the overall improvement in the word-weighted average
(WW Avg) is 2.4% relative. Similarly, model M3′ also follows
this trend and offers an overall relative improvement of 4.5%
in WW Avg compared to M2′, and this improvement can be
observed across all the test sets, including Primock57 and Earn-
ings. When comparing M3 and M3′ with their respective base-
lines, M1 and M1′, the overall relative WW Avg improvements
are significant at 19.7% (3.2% absolute) and 11.1% (1.6% abso-
lute), respectively. These results highlight the benefits of lever-
aging a good resource of conversational speech corpus, such as
People’s Speech, with effective automatic re-segmentation and
curation for acoustic model training.

7. Conclusion
We outlined a solution for efficiently re-segmenting and tran-
scribing conversational speech data, specifically the People’s
Speech dataset. The process involves multiple stages, such
as transcription, punctuation restoration and text segmentation
forced alignment to determine segment-level boundaries, re-
transcription of these segments with word-level time-stamp cal-
culation, and generating final audio files based on a set of fixed
rules. We used both in-house and open-source models to com-
plete this pipeline, but noted that the in-house models could be
substituted with open-source alternatives to achieve the same
outcome. The study utilized 973 raw audio files from the
archive.org, resulting in approximately 543 hours of data. We
demonstrated the effectiveness of this process by testing dif-
ferent acoustic models that highlights its potential to boost up
ASR performance across domains. The pipeline can be adapted
to extract speech data from any raw audio and used for speech
recognition tasks across languages. Furthermore, the authors
implemented an automatic outlier detection process based on
CTC loss to improve the quality of silver or bronze level dataset.
In the future, we plan to optimize the re-segmentation pipeline
and expand the mining process to create a larger-scale corpus
from the People’s Speech raw audio archive.
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“Earnings-21: A Practical Benchmark for ASR in the Wild,” in
Proc. Interspeech 2021, 2021, pp. 3465–3469.

[14] A. Papadopoulos Korfiatis, F. Moramarco, R. Sarac, and
A. Savkov, “PriMock57: A dataset of primary care mock consul-
tations,” in Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers).
Dublin, Ireland: Association for Computational Linguistics, May
2022, pp. 588–598.

[15] T. Kim, K. M. Yoo, and S.-g. Lee, “Self-guided contrastive learn-
ing for BERT sentence representations,” in Proceedings of the
59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Online: Asso-
ciation for Computational Linguistics, Aug. 2021, pp. 2528–2540.

[16] T. Parcollet, M. Ravanelli, P. Plantinga, A. Rouhe, S. Cornell,
L. Lugosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong,
J.-C. Chou, S.-L. Yeh, S.-W. Fu, C.-F. Liao, E. Rastorgueva,
F. Grondin, W. Aris, H. Na, Y. Gao, R. de Mori, and Y. Bengio,
“SpeechBrain: A General-Purpose Speech Toolkit,” Mar. 2022,
preprint. [Online]. Available: https://hal.science/hal-03601303

3943


