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Abstract
This paper presents improvements to real-time phase recon-

struction using deep neural networks (DNNs). The advantage of
DNN-based approaches in phase reconstruction is that they can
leverage prior knowledge from data and are adaptable to real-
time applications by using causal models. However, conven-
tional DNN-based methods do not consider the varying prop-
erties of the phase at different time–frequency bins. Our pa-
per proposes loss functions for phase reconstruction that incor-
porate frequency-specific and amplitude weights to distinguish
the importance of phase elements based on their properties. We
also use an extension of the group delay to improve the phase
connections along the frequency. To improve the generaliza-
tion, we augment the data by randomly shifting the signals in
the time domain for each epoch during training. Experimental
results show the superior performance of the proposed methods
compared to conventional DNN-based and non-DNN real-time
phase reconstruction methods.
Index Terms: Deep neural network, phase reconstruction, in-
stantaneous frequency, group delay, von Mises distribution

1. Introduction
Short-time Fourier transform (STFT) phase reconstruction has
recently been receiving increased attention [1–18]. In contrast
to conventional STFT-based applications, which only process
the amplitude, the phase reconstruction can help produce higher
quality time-domain signals in various fields, including speech
enhancement [8–11] and source separation [3, 4, 12]. How-
ever, reconstructing the phase is challenging due to the wrap-
ping issue and phase sensitivity to waveform shift. In addition,
when only the amplitude is available, the phase reconstruction
is affected by the sign indetermination problem. For exam-
ple, the STFTs of two opposite signals, x(n) and −x(n), have
the same amplitude but different phase spectrograms. Various
phase reconstruction methods have been proposed, including
those based on STFT consistency [13, 14], models [8, 9], opti-
mization [15, 16], phase gradient heap integration (PGHI) [17],
and deep neural networks (DNNs) [1–7, 18].

Many phase reconstruction algorithms require iteration or
future frame information to estimate the current-frame phase,
which may only be feasible offline. For real-time settings, some
modifications have been made. [19] proposed a real-time ver-
sion of the Griffin–Lim algorithm, called the real-time spec-
trogram inversion algorithm (RTISI), which iteratively recon-
structs the signal frame-by-frame with an effective initialization
scheme. In a non-iterative manner, the single-pass spectrogram
inversion (SPSI) [20] utilizes a phase-locking technique related
to a phase vocoder. [21] proposed a real-time adaptation of the
PGHI (i.e., RTPGHI) with one or even zero look-ahead frames.

Although these methods have achieved promising results, they
are still suboptimal due to some approximations used, e.g., the
harmonic model assumption in the SPSI and the phase deriva-
tive approximation in the RTPGHI. Among phase reconstruc-
tion approaches, DNN-based methods have significant potential
for real-time applications, as they can be easily adapted by us-
ing a causal model. Additionally, DNNs have a robust modeling
capability to learn the underlying structure of the target signals.

However, most of the conventional DNN-based phase re-
construction methods do not consider the distinct properties of
the phase at different time–frequency (TF) bins. In the inverse
STFT (ISTFT), the amplitude acts as a scaling factor for the
TF bins, and the phase determines their relative position, thus
ensuring their proper combination. If the amplitude is low, re-
gardless of the values of the phase, the contribution of the TF
bin to the reconstructed signal will be small. Training a model
with the phase at these low-amplitude bins may not bring much
benefit and might even restrict the model from learning useful
information in the high-amplitude bins. Another property of the
phase is that, unlike the amplitude, its values depend linearly on
the frequency. At high frequencies, the phase changes quickly
along the time, leading to instability. These unstable phase el-
ements usually yield high errors, which may impede the model
from fitting the more stable phase elements at low frequencies.

Taking into account the varying properties of the phase,
the aim of this paper is to improve DNN-based methods for
real-time phase reconstruction from the amplitude, including
proposing new loss functions and data augmentation methods.
Starting with the von Mises distribution-based loss functions as
in [1] and [2], we impose weights on the phase loss with re-
spect to frequency to control the effect of unstable phase ele-
ments at high frequencies. We also leverage amplitude weights
to separate the importance of the phase at different TF bins. In
addition, we extend a phase feature, group delay (GD), and in-
clude it in the loss function to improve the connection of phase
elements along the frequency. The proposed loss functions are
utilized to train a causal DNN architecture for real-time applica-
tions. To improve the generalization of the models, we augment
the training data by randomly shifting the signals in the time
domain before calculating the STFT for each training epoch.

2. Conventional loss functions for
DNN-based phase reconstruction

In this section, we define the notation and review two base-
line loss functions for DNN-based phase reconstruction. Let
|Xk,ℓ| and Φk,ℓ represent the STFT amplitude and phase
of a discrete-time signal, where k ∈ {0, . . . ,K − 1} and
ℓ ∈ {0, . . . , L− 1} are the frequency bin index and time frame
index, respectively. Their matrix notations are represented by
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bold letters, i.e., |X| and Φ. The STFT is calculated with the
window length of M samples, the window shift of R samples,
and the number of DFT points of N .

2.1. Von Mises distribution-based loss function [1]

To handle the periodicity of the phase, [1] modeled the phase
using the von Mises distribution, which is a circular distribution.
Its probability density function is defined as

f(Φk,ℓ|µ, κ) = eκ cos(Φk,ℓ−µ)

2πI0(κ)
, (1)

where µ, κ, and I0(·) represent a measure of location, a measure
of concentration, and the modified Bessel function of order 0,
respectively. The negative log-likelihood of (1) is defined as

− log f(Φk,ℓ|µ, κ) = −κ cos(Φk,ℓ − µ) + const., (2)

where const. is a constant with respect to Φk,ℓ. With the as-
sumption of a constant κ, the phase loss function is defined as

Lp(Φ, Φ̂) = −
∑

k,ℓ

Cp
k,ℓ ≜= −

∑

k,ℓ

cos(Φk,ℓ − Φ̂k,ℓ). (3)

To improve the performance, [1] utilized a phase feature,
i.e., the GD [22]. The GD is defined as the negative frequency
derivative of the phase and is calculated as

Uk,ℓ = P(Φk,ℓ − Φk+1,ℓ), (4)

where P(·) is a function that wraps a value into the principal
range of (−π, π]. By modeling the GD with the von Mises dis-
tribution, [1] introduced a multitask-learning loss function for
phase reconstruction, which can be expressed as

Lpgd(Φ, Φ̂) = −
∑

k,ℓ

(
λpCp

k,ℓ + λgdCgd
k,ℓ

)
, (5)

where
Cgd
k,ℓ = cos(Uk,ℓ − Ûk,ℓ), (6)

and λp and λgd are the weights for the loss components.

2.2. Von Mises mixture model-based loss function [2]

To mitigate the sign indetermination problem, the idea in [2] is
to reconstruct the phase of either x(n) or −x(n). The phases of
x(n) and −x(n) have a difference of π and can be modeled by
a von Mises mixture model with two mixture components, as

F(Φk,ℓ|µ, κ) = 1

2
f(Φk,ℓ|µ, κ) + 1

2
f(Φk,ℓ|µ+ π, κ). (7)

Assuming κ = 1, the von Mises mixture model-based loss func-
tion is defined using maximum likelihood, as

Lvmm(Φ, Φ̂) = −
∑

k,ℓ

Cvmm
k,ℓ

≜= −
∑

k,ℓ

log
(
ecos(Φk,ℓ−Φ̂k,ℓ) + e− cos(Φk,ℓ−Φ̂k,ℓ)

)
.

(8)

A problem in training DNNs with Lvmm(Φ, Φ̂) is that the recon-
structed phase may be inconsistent. Specifically, some phase
elements may converge to the phase of x(n) while others to the
phase of −x(n). To ensure a consistent reconstructed phase, the
authors used the instantaneous frequency (IF) and GD losses to
enhance the dependencies of phase elements along time and fre-
quency. IF [23] is defined as the time derivative of the phase as

Vk,ℓ = P(Φk,ℓ+1 − Φk,ℓ). (9)
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Figure 1: Illustration of weights of Lfw.

The loss function combining IF and GD losses is defined as

Lvmmifgd(Φ, Φ̂) = −
∑

k,ℓ

(
λvmmCvmm

k,ℓ + λifC if
k,ℓ + λgdCgd

k,ℓ

)
,

(10)
where

C if
k,ℓ = cos(Vk,ℓ − V̂k,ℓ), (11)

and λvmm and λif are the weights for the loss components.

3. Proposed phase reconstruction
In this section, we introduce several improvements for the
DNN-based phase reconstruction. Specifically, we present loss
functions that incorporate weights in Section 3.1 and use the
extended GD in Section 3.2. In addition, we describe a data
augmentation scheme for training the DNN in Section 3.3.

3.1. Weighted loss functions

In our loss functions, we combine the ideas from both [1] and
[2]. For low frequencies, we use the von Mises distribution-
based phase loss, Lp, which we have found to be effective
through empirical testing. At high frequencies, we utilize the
von Mises mixture model-based phase loss, Lvmm, to mitigate
the sign indetermination problem. We also include the IF and
GD losses to enhance the time and frequency dependencies of
the phase. Weights are incorporated into the loss function as
follows.

3.1.1. Frequency-specific weights

Instead of using a fixed weight for all frequency bins, we utilize
weights that vary in accordance with frequencies to control the
impact of Lp and Lvmm on the loss function. The loss function
with frequency-specific weights is defined as

Lfw(Φ, Φ̂) = −
∑

k,ℓ

(
αp(k)Cp

k,ℓ + αvmm(k)Cvmm
k,ℓ

+λifC if
k,ℓ + λgdCgd

k,ℓ

)
,

(12)

where αp(k) and αvmm(k) are the weights of Cp
k,ℓ and Cvmm

k,ℓ ,
respectively. Our preliminary idea for the weights is illustrated
in Fig. 1, in which Cp

k,ℓ is used at low frequencies with high
weights while Cvmm

k,ℓ is assigned low weights to reduce the effect
of unstable phase elements at high frequencies. k1 and k2 are
the boundary frequencies for the phase losses. The weights for
C if
k,ℓ and Cgd

k,ℓ are constant because, unlike the phase, the values
of the IF and GD are not linearly dependent on frequency.

3.1.2. Amplitude weights

In addition to frequency-specific weights, we introduce ampli-
tude weights to emphasize the importance of high-amplitude TF
bins. By incorporating amplitude weights, (12) becomes

Lafw(Φ, Φ̂) = −
∑

k,ℓ

Wk,ℓ

(
αp(k)Cp

k,ℓ + αvmm(k)Cvmm
k,ℓ

+λifC if
k,ℓ + λgdCgd

k,ℓ

)
,

(13)
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where

Wk,ℓ =

{
|Xk,ℓ|, if |Xk,ℓ| < γ

γ, otherwise
, (14)

and γ is the weight cutoff, which is used to reduce the gap be-
tween low and high amplitudes, thereby preventing the model
from excessively fitting the phase at high-amplitude TF bins.

3.2. Extension of group delay

Conventional loss functions utilize the GD loss to preserve the
phase relationship across frequencies. However, as a phase dif-
ference between two consecutive bins as in (4), the GD may
only capture the local relationship. Meanwhile, all frequency
bins in a frame are interdependent because they are calculated
from all the samples in the signal frame. To enhance the connec-
tions of the reconstructed phase elements along the frequency,
we extend the calculation of the GD to the phase difference be-
tween two frequency bins with the frequency hop of i bins. The
extended GD is calculated as

U
(i)
k,ℓ = P(Φk,ℓ − Φk+i,ℓ). (15)

For i = 1, U (i)
k,ℓ is identical to Uk,ℓ. As a phase difference, U (i)

k,ℓ

is also a circular variable, which can be modeled by von Mises
distribution. We integrate U

(i)
k,ℓ into the loss function as

Lafw gd+(Φ, Φ̂)=−
∑

k,ℓ

Wk,ℓ

(
αp(k)Cp

k,ℓ+αvmm(k)Cvmm
k,ℓ

+λifC if
k,ℓ +

∑

i∈S

λgd(i)Cgd(i)
k,ℓ

)
,

(16)

where S is a set of frequency hops used to calculate U (i)
k,ℓ. Cgd(i)

k,ℓ

is defined similarly to Cgd
k,ℓ, and λgd(i) is its weight.

It is worth noting that the same technique can be applied to
the IF to enhance phase relationships along the time. For the
scope of this paper, we only consider the GD extension.

3.3. Data augmentation

The phase is well-known to be sensitive to the waveform shift,
as even a small shift of the signal in the time domain can lead to
a significant change in the phase spectrogram. Fig. 2 illustrates
the amplitude and phase spectra of two signal frames with the
shift of 1 sample. We can see here that the phase spectra are
very different while the amplitude spectra are almost the same.
When training DNNs to estimate the spectral information, con-
ventional methods usually calculate the STFT of the signal once
and use it for every epoch. In other words, since the typical win-
dow shift is larger than 1 sample, if one frame in Fig. 2 is used
for training, the other will be ignored, even though both frames
contain useful information about variations of the phase.

To augment the training data, for each epoch, we randomly
shift the signals by m samples before calculating the STFT. The
shifted signal is defined as

x′(n) = x(n+m). (17)

This is equivalent to removing the first m samples of the signal.
The shift m is limited in [0, R). If m is equal to the window
shift R, frame ℓ of x′(n) is identical to frame (ℓ+ 1) of x(n).

The augmentation can be extended in cases where high-
resolution data are available. By shifting the signal before
resampling it to the target sampling rate, we will be able to
achieve a shift of less than 1 sample.
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Figure 2: Example of two frames with shift of 1 sample.
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Figure 3: Diagram of convolutional recurrent network.

4. Experiments and results
4.1. Experimental setup

The experiment is divided into two parts. First, we compared
the performances of the DNN-based phase reconstruction using
the proposed loss functions Lfw (hereafter, FW), Lafw (hereafter,
AFW), and Lafw gd+ (hereafter, AFW GD+) with the conventional
loss functions Lp [1] (hereafter, P), Lpgd [1] (hereafter, PGD),
and Lvmmifgd [2] (hereafter, VMMIFGD). For a fair comparison,
the proposed data augmentation was applied to all methods.
To evaluate the efficacy of the data augmentation scheme, we
trained a model using Lp without augmenting the data (here-
after, P noAug). In the second part of the experiment, we com-
pared the proposed method, AFW GD+, with other non-DNN
real-time phase reconstruction methods including RTISI (here-
after, RTISI) [19], SPSI (hereafter, SPSI) [20], and RTPGHI
(hereafter, RTPGHI) [21]. For these non-DNN methods, we set
the number of look-ahead frames to zero so that they are all
causal. We also included the offline version of RTPGHI (i.e.,
PGHI [17]) for comparison.

The training data were the training set of the TIMIT
Acoustic-Phonetic Continuous Speech Corpus [24], which con-
sists of recordings of 462 speakers of eight dialects of Amer-
ican English each reading ten sentences. The sampling rate is
16 kHz. The test was conducted on 300 samples (150 men and
150 women) randomly selected from the test set of TIMIT.

The weights were selected empirically for this preliminary
work. We fixed λif and λgd to 1.0 and then varied the other
weights for several values around 1.0. As a result, for all loss
functions, λp was set to 1.0, and λvmm was set to 0.1. The
boundary frequencies k1 and k2 were set to 25 and 100, re-
spectively. After normalizing the speech signals to the active
level [25] of −30 dB, the cutoff γ was set to 0.07. For Lafw gd+,
we considered only one extension of the GD, i.e., S = {1, 2},
corresponding to the weights λgd(1) = 1.0 and λgd(2) = 0.1.

For real-time phase reconstruction, we utilized a causal
DNN architecture, i.e., the convolutional recurrent network
(CRN) [26], as shown in in Fig. 3. The encoder and decoder
were designed symmetrically, each comprised five convolu-
tional/deconvolutional layers with gated linear units [27] (Con-
vGLU/DeconvGLU). For each layer, we used a kernel size of
2× 3 (time × frequency), stride of (1, 2), and number of chan-
nels of 64. We also applied the instance normalization (IN) [28]
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Figure 4: Performances of different loss functions for DNN-
based phase reconstruction, where blue and red respectively
indicate conventional and proposed methods.

and parametric rectified linear unit (PReLU) after each layer,
except for the last layer. Temporal information was modeled
by two layers of long short-term memory (LSTM) with 256
units per layer. The dense layers were utilized to convert the
dimensions of the output/input of the encoder/decoder to the in-
put/output of the LSTM layers. In total, the model consisted of
nearly 2.2 million parameters.

The input of the models was the log amplitude spectrogram
normalized to zero mean and unit variance. The output was the
phase spectrogram. The STFT was calculated using a Ham-
ming window with a 32-ms length, 8-ms shift, and 512-point
DFT. The Adam optimizer was used with a batch size of 4 au-
dio samples and the learning rate of 10−5. For the first part of
the experiments, each model was trained for 1000 epochs. The
model in the second part was trained for 10 000 epochs.

As evaluation metrics, we calculated the short-time objec-
tive intelligibility (STOI) [29] and the perceptual evaluation of
speech quality (PESQ) [30] of the reconstructed signals. We
also calculated the consistency measure [14] as

C(X̂) = 10 log10
∥X̂ − STFT(ISTFT(X̂))∥2

∥X̂∥2
, (18)

where (X̂)k,ℓ = |Xk,ℓ|ejΦ̂k,ℓ . PESQ and STOI are expected
to be high, while the consistency measure is expected to be low.

4.2. Experimental results and discussion

Fig. 4 compares the performances of loss functions for DNN-
based phase reconstruction, which exhibit a similar pattern for
all metrics. In the comparison of the first two methods, P per-
forms notably better than P noAug, even though they use the
same loss function Lp. This highlights the efficacy of the pro-
posed data augmentation. Although the shifting technique is
not a novel approach, it may have been overlooked in train-
ing DNNs for estimating the amplitude because the amplitude
changes slowly over time, and this type of data augmentation
may not have much of an effect. However, the experimen-
tal results here demonstrate that the shifting technique can be
highly beneficial for phase reconstruction. Fig. 4 also shows
that, in comparison with the conventional loss functions, the
proposed loss functions FW, AFW, and AFW GD+ gradually lead
to a better performance, thereby demonstrating the efficacy of
the frequency-specific weights, amplitude weights, and the ex-
tended GD in DNN-based phase reconstruction. We have found
that these DNN-based models for phase reconstruction perform
better when the fundamental frequency of the signal is low and
become less stable when the fundamental frequency is high.
This leads to the large ranges of their scores as well as over-
laps between these score distributions. However, the paired
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Figure 5: Performances of real-time phase reconstruction algo-
rithms (except PGHI).

sample t-test demonstrated that all the improvements are sta-
tistically significant, except between the consistency measures
of VMMIFGD and FW. In addition, the final proposed method,
AFW GD+, clearly outperforms all conventional methods.

Fig. 5 presents a comparison of real-time phase reconstruc-
tion algorithms, with the offline algorithm PGHI as a reference.
The results here reveal that the proposed method achieves su-
perior performances in PESQ and STOI while maintaining a
comparable consistency measure to other real-time algorithms.
In addition, the proposed method even outperforms the of-
fline PGHI algorithm in PESQ and slightly underperforms in
STOI. These results demonstrate the efficacy of the DNN-based
method in real-time phase reconstruction.

Another advantage of the DNN-based methods is their flex-
ibility for adaptation to various applications. For example,
when a noisy/mixed phase is available, it can easily be incor-
porated as input to improve the performance of the model. A
drawback of the conventional non-DNN methods is that they
usually require a clean amplitude to estimate the phase. In con-
trast, DNNs can estimate the phase by using any features that
contain the phase information, even if they are not clean. How-
ever, the DNN-based phase reconstruction still faces the chal-
lenge of rapid phase changes at high frequencies. Although this
paper proposes using low weights for the phase loss to reduce
the sensitivity, it does not fully address the problem of effec-
tively reconstructing the high-frequency phase. Possible direc-
tions for future work include utilizing other advanced DNN ar-
chitectures to better model the phase sensitivity and incorporat-
ing other phase features to enhance the phase structure.

5. Conclusions
In this paper, we presented improvements to DNN-based real-
time phase reconstruction. Utilizing the varying properties of
the phase as a basis, we proposed loss functions that incorporate
frequency-specific weights, amplitude weights, and an exten-
sion of the GD. In addition, we introduced a data augmentation
method to improve the model generalization. Experimental re-
sults demonstrated the efficacy of the data augmentation and the
superior performance of the proposed loss functions compared
to conventional loss functions. The results also showed that the
proposed method outperforms other non-DNN real-time phase
reconstruction methods.
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