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Abstract

Visually grounded models learn from paired images and their
spoken captions. Recently, there have been attempts to uti-
lize the visually grounded models trained from images and their
corresponding text captions, such as CLIP, to improve speech-
based visually grounded models’ performance. However, the
majority of these models only utilize the pretrained image en-
coder. Cascaded SpeechCLIP attempted to generate localized
word-level information and utilize both the pretrained image
and text encoders. Despite using both, they noticed a substantial
drop in retrieval performance. Here, we propose to use a hierar-
chical segmental audio encoder that can generate a sequence of
word-like units from audio. We use the pretrained CLIP text en-
coder on top of these word-like units representations and show
significant improvements over the cascaded variant of Speech-
CLIP.

1. Introduction

Speech processing systems aided by large amounts of labeled
data and computational resources achieve remarkable perfor-
mance [1-3]. However, vast amounts of labeled data are not
available for most languages, and transcribing a large amount
of speech data is expensive. Therefore, there has been a lot of
interest in developing methods to learn useful information from
unlabeled data [4-9]. Recently, self-supervised learning (SSL)
methods have emerged as a significant paradigm for learning
representations from unlabeled audio data [1, 10, 11]. In SSL
methods, the model is trained to solve a pretext task for which
labels can be generated from the raw audio. Some common pre-
text tasks include masked language modeling [1,12], next frame
prediction [10], next segment prediction [13, 14], and masked
reconstruction [15, 16]. Another direction is to use multimodal
data and extract useful information to improve performance in
a given modality.

Parallel text and image data have been leveraged for learn-
ing representations that help downstream performance in both
modalities [17, 18]. Contrastive language image pretraining
(CLIP) learns to align the parallel image and text data crawled
from the internet [18]. CLIP shows remarkable performance
in zero-shot setting for image classification and image/text re-
trieval from text/images [18]. Parallel images and spoken cap-
tions have also been leveraged to improve speech processing
systems [19-24]. These systems are commonly referred to
as visually grounded speech (VGS) systems. VGS systems
have been shown to improve speech systems performance for
speech recognition [21], word discovery [22], and speech syn-
thesis [23]. VGS models trained with just retrieval loss can
learn semantic [24] and word-level information, such as bound-
aries [22] from speech.
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Figure 1: Overview of the proposed Segmental SpeechCLIP.

Recently, there have been efforts to utilize CLIP for improv-
ing the performance of VGS systems [25-27]. However, most
of these systems only utilize the CLIP model’s image encoder.
WAV2CLIP [26] and the parallel variant of speechCLIP [27]
generate a single representation per utterance summarizing the
information. This global representation is then used for classi-
fication and retrieval tasks. There are no constraints to localize
word-level information. Guidance from models trained on text
data, such as CLIP text encoder, could help extract semantic
information from speech. These were some of the motivations
behind the cascaded variant of speechCLIP.

The cascaded SpeechCLIP [27] model appends K learnable
CLS tokens to the utterance to extract the most important key-
words. Vector quantization is then used to map these keywords
to CLIP’s subword embeddings. The frozen text encoder is used
on top to generate sentence embedding. A frozen CLIP image
encoder is used to extract image representations. However, the
cascaded variant has significantly lower retrieval recall scores
than the parallel variant.

We propose Segmental SpeechCLIP to improve the key-
words extraction from speech utterances and better utilization
of the text CLIP encoder as shown in Fig. 1. We show that
our Segmental SpeechCLIP significantly outperforms the cas-
caded variant of SpeechCLIP. The cascaded speechCLIP model
discovers a fixed number of keywords, i.e., eight from the ut-
terances. Our Segmental SpeechCLIP automatically deduces
the number of word-like units in an utterance. There is no im-
plicit constraint to enforce the temporal structure on the discov-
ered keywords in the cascaded speechCLIP, whereas Segmen-
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tal SpeechCLIP, by design, discovers word-like units in tempo-
ral order. Instead of quantization and mapping the keywords
to subword embedding, we directly learn the subword embed-
dings.

Our method uses a segmental speech encoder based on Seg-
mental Contrastive Predictive Coding (SCPC) [13, 14]. SCPC
introduced the two-level architecture, which looked at both
frame and phone-level information for phone and word seg-
mentation. Experimental evidence shows that multi-level in-
formation was useful for phone and word segmentation. [28]
modified the boundary detector and used reinforcement to learn
the segment boundaries. However, these models are unimodal
and only utilize speech data. We are utilizing multimodal data.
These models are typically trained from speech via the next-
term prediction task. Here we combine next-term prediction
with the contrastive image-speech retrieval task. The segmental
encoder generates a sequence of word-like units from an utter-
ance.

We use the SpokenCOCO dataset [23] for training and eval-
uating the proposed method. On the image-speech and speech-
image retrieval task, our model significantly outperforms the
cascaded variant of SpeechCLIP. In the end, we show compet-
itive performance on the Zerospeech 2021 semantic similarity
task [29].

2. Segmental SpeechCLIP

The CLIP model is trained with a large amount of paired image-
text data. CLIP uses two encoders for processing images and
text separately and learns to align semantically similar images
and text captions. The features extracted from CLIP transfer
well to other computer vision tasks. We aim to utilize both
the text and image encoder to learn speech representations. By
cascading the output of the segmental speech encoder with the
CLIP text encoder, we aim to induce semantic information in
the speech encoder.

The main difference between our proposed method and pre-
viously proposed approaches is the word extraction process
from the utterances. The segmental speech encoder used for
word extraction is summarized in Fig. 2. For the audio encoder,
we first use frozen Wav2vec?2 to extract audio frame-level fea-
tures. A trainable segmental audio encoder then extracts sub-
word from the frame-level features. The frozen CLIP text en-
coder generates sentence embeddings from the sub-words. A
frozen CLIP image encoder is used for extracting image em-
beddings. We describe the various components of the segmental
speech encoder in detail below.

2.1. Next Frame Classifier

Let the sequence X = (z1, z2, ..., £T) represent a waveform.
We use a frozen Wav2vec?2 followed by a feed-forward network
to extract frame level features Z(€ RP*L) = (z1, 22, ..., z1) at
low frequency. Each p-dimensional vector z; corresponds to a
25 ms audio frame extracted with a 20 ms shift. Given frame z;,
the encoder (fenc in Fig. 2) tries to classify the next frame z41
correctly within a set of K + 1 representations z € Z;, which
include z;41 and K negative examples, randomly sampled from
the same utterance, as

exp(sim(z¢, z¢+1))

Ses, ep(sim(anz) )

Lnrc = —log

T . . . .
where sim(x,y) = Y- denotes the cosine similarity.
’ [Ty
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Figure 2: Overview of the Segmental speech encoder.

2.2. Boundary detector

We use the boundary detector from [13], which compares the
adjacent frames and output a boundary if the similarity between
the adjacent frame falls below a threshold. The boundary detec-
tor outputs a sequence of ones and zeros, each one indicating
if there is a boundary change at that timestep. We generate the
segment representations by feeding the average of constituting
frames in the segment through a segment encoder, Senc. We use
the vectorized computation method from [13] for a faster seg-
ment representation calculation. After the boundary detection
stage the feature sequence Z = (z1,z2, ..., z) is segmented
into disjoint contiguous segments S = (s1, Sz, ..., Samr).

2.3. Directly learning the CLIP sub-word representations

In the cascaded SpeechCLIP approach, the audio encoder gen-
erates keyword embeddings. Then, argmax is used to find the
index of subword embedding in the CLIP vocabulary closest to
the keyword. The corresponding subword embedding is used as
the keyword embedding. This process uses the argmax operator,
which is non-differentiable. Straight-through gradient estimator
is used for training the model.

Here, we directly generate subword embeddings via the
segmental audio encoder. These embeddings are fed into the
text encoder bypassing the pretrained vocabulary in the CLIP
model. This way, our model can be trained without straight-
through estimators. Although, this may not generate exact em-
beddings from the vocabulary. We pass the segment embed-
dings S = (si1,s2,...,snm) through the CLIP text encoder to
generate the audio embedding, a.



Table 1: Recall scores for image-speech retrieval on SpokenCOCO 5k test set

Image Speech Mean
R@l R@5 R@I0 R@! R@5 R@10 R@1 R@5 R@10
Parallel SpeechCLIP [27] 35.8 66.5 78.0 50.6 80.9 89.1 432 737 83.6
Cascaded SpeechCLIP [27] 6.4 20.7 31.0 9.6 27.7 39.7 8 242 35.6
Segmental SpeechCLIP 28.2 55.3 67.5 28.5 56.1 68.9 28.4 55.7 68.2

2.4. Retrieval loss

Typically, both audio and image encoders are trained in visu-
ally grounded models. The image embedding should be closest
to the corresponding audio embedding, and the audio should be
closest to the corresponding image embedding from a pool of
negative examples. The loss is the sum of the two losses. Since
we are not training the image encoder, we train the audio en-
coder to pick the image embedding of the paired image from
a set that contains negative examples. It can be considered a
classification problem where we classify the paired image em-
bedding from a set with negative examples given the audio em-
bedding. More information on the negative sampling process
can be found in section 2.5. The retrieval loss is given as:

exp(agir” /7)
ez, exp(axd™/7)

where ay is the output of the CLIP text encoder, i is the output
of the CLIP image encoder and 7 is the temperature.

Our model has multiple components, and we train our
model progressively. We begin by training the frame-level en-
coder for a few steps and then add the retrieval loss. The two
losses are trained together for the first epoch. For the rest of the
training, only the retrieval loss is optimized.

(@3

LRET = — log

2.5. Negative sampling

Negative sampling is an important part of the contrastive loss.
It helps us prevent model collapse. We make the following two
changes to the negative sampling process.

2.5.1. Disentangling batch size and negative examples

Typically, the negative samples are sampled from the batch.
This, unfortunately, ties the number of negative examples with
the batch size. To increase the number of negative examples,
we must increase the batch size, which is not always possible
on smaller GPUs.

Since we are using frozen pretrained CLIP, i.e., image rep-
resentation stays the same throughout training. We load all the
image representations in advance and sample negative examples
from them. This way, we can increase the number of negative
examples without increasing the batch size. This is impossible
when training the image encoder, as the image representation
changes after every update.

2.5.2. Hard negative mining through clustering

The quality of the negative samples impacts the contrastive loss,
and sampling better negative examples have been an active re-
search direction. We want to find the closest examples for each
entry in the batch and then contrast them. Since the image em-
beddings are fixed, we can find the closest examples before
training the audio encoder. Here we use a simple clustering-
based technique to sample harder negative examples.

433

We first cluster the image embeddings for the dataset into K
subsets and store the cluster index for each image embedding.
During training, we find the clustered index for each embed-
ding and sample up to 512 examples from that cluster. These
form the hard negative examples. The rest of the examples are
randomly sampled. Again this is possible because the image
embeddings do not change during training.

3. Experiments
3.1. Experimental setup

Dataset: We train the Segmental SpeechCLIP model on Spo-
kenCOCO dataset [23]. Each image in the dataset is paired
with five spoken captions. SpokenCOCO contains 123k images
and 742 hours of speech. We follow the SpeechCLIP [27] for
train/test splits. We use a much smaller split (first 1000 pairs)
of validation set to save time during training. We use image-to-
speech and speech-to-image retrieval performance as the evalu-
ation metric.

Model: In our experiments, the wav2vec2 [1] large model and
the CLIP model are frozen. We use them as feature extractors.
The next frame classifier is a three-layer feed-forward network
with 1024 hidden units. The segment encoder contains two con-
volutional layers with 1024 filters with kernel size 3 followed by
a feed-forward network with two layers with either 512/768 hid-
den units for small/large CLIP models. The segmental speech
encoder contains approximately 10 million parameters. We use
Adam optimizer with 2e-5 learning rate and a batch size of
21. We decay the learning rate by a factor of 0.95 every three
epochs. All the experiments are conducted on a single 11GB
GPU.

3.2. Retrieval performance

In this section, we evaluate the segmental SpeechCLIP on the
image-speech retrieval task to measure how well we can align
speech and image embeddings. As shown in Table 1 our pro-
posed model significantly outperforms the cascaded Speech-
CLIP model. We almost doubled the performance of cascaded
SpeechCLIP. Segmental SpeechCLIP has a slightly lower num-
ber of trainable parameters.

We use Wav2vec2.0 as the feature extractor for speech,
whereas cascaded SpeechCLIP uses Hubert [30] as the feature
extractor. Another big difference is the feature extraction pro-
cess; we use the features from a single layer, i.e., layer 11 in the
Wav2vec2 transformer encoder, where cascaded SpeechCLIP
learns weights to combine the transformer encoder’s hidden
representations. A weighted combination of layer-wise features
from wav2vec2/Hubert tends to work better than single-layer
features on downstream tasks [31, 32]. We only use features
from a single layer due to GPU memory constraints.

Our approach shows the potential for utilizing pretrained
text encoders for improving VGS systems. However, the per-
formance is still lower than the parallel variant of SpeechCLIP,



which extracts global representations from speech. We hypoth-
esize that the segmentation process and the passing of the seg-
mented speech through the CLIP text encoder lose information.

3.3. Impact of hard mining through clustering

We proposed to use clustering for mining hard negative exam-
ples. We explore if this change helps the learning process. We
train a system where all the negative examples are sampled ran-
domly and the other where clustering is used for selecting the
hard negative examples. Both cases use the same number of
negative examples. As seen from Table 2, hard mining via clus-
tering helps the learning process.

Table 2: Average retrieval on SpokenCOCO test set. “with”
and “without” indicate use/lack of clustering for hard mining
negative examples.

R@l R@5 R@10
with 261 522 64.8
without 224  48.6 61.1

3.4. Impact of initial word boundaries

Unsupervised word segmentation has been a growing research
area. Recent state-of-the-art solutions utilize multi-modal
(paired speech, image) data [22]. Our segmental encoder seg-
ments the audio data in sub-word like segments. We experi-
ment with whether using the word boundaries from an exist-
ing word segmentation system can be useful. We use the VG-
Hubert model for extracting the initial word boundaries [22].
VG-Hubert achieves the best word segmentation performance
on TIMIT and Buckeye datasets. We insert the VG-Hubert
boundaries in between the boundaries generated by the segmen-
tal speech encoder.

As seen from Table 3, using word boundaries have no or a
little negative impact on the retrieval performance. This might
be either the word boundaries do not help the retrieval task or
our insertion process is not optimal. In the future, we plan to
explore more ways of utilizing the VG-Hubert boundaries in
the segmental SpeechCLIP model.

Table 3: Average retrieval on SpokenCOCO test set. “with”
and “without” indicate use/lack of initial word boundaries.

R@l R@5 R@10
with 224 486 61.1
without 23.1  49.2 61.5

3.5. Impact of model size

The CLIP model is used as a feature extractor for images and
for extracting the final audio representations. We analyze the
impact of CLIP model size on retrieval performance. We use
CLIP small model (ViT-B/32) with 250 million parameters and
the large CLIP model (ViT-L/14) with 422 million parameters.
The segmental speech encoders used in the two cases are very
similar. For the large CLIP model, the SSE generates 768-
dimensional representations, and for the small CLIP model, the
output dimension is 512.

As evident from Table 4, the large model helps the retrieval
performance. The observation is similar to [27], where the sys-
tem with large CLIP models outperformed the one with smaller
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CLIP models.

Table 4: Average retrieval on SpokenCOCO test set.
Small/Large denotes the CLIP model size.

R@1 R@5 R@I0
Small 26.1 522 64.8
Large 28.3 557 68.2

4. Semantic representation learning

One of the motivations for utilizing the pretrained CLIP was to
learn semantic representations. We use Zerospeech 2021 chal-
lenge [29] semantic similarity task, sSIMI, to evaluate the rep-
resentations’ quality. This task aims to compute the similarity
between representations of pairs of words and compare it with
similarity scores assigned by human annotators.

As seen in Table 5, we perform competitively with a state-
of-the-art method. However, there are a few key differences
in the methodologies. Our model has fewer parameters and
less training time than FaST-VGS+. FaST-VGS+ relies on pre-
trained R-CNN to generate bounding boxes for the objects in the
image; our model does not. FaST-VGS+ can leverage speech-
only data via a Masked language modeling task which needs to
be improved in our approach. Overall, FaST-VGS+ is trained
on SpokenCoCo and Librispeech, whereas we only use Spo-
kenCOCO. This might explain the lower performance on Lib-
rispeech test data.

Table 5: Semantic similarity scores on the Zerospeech 2021
sSIMI task

budget dev test
syn. lib. syn. lib.
VG baseline 72 9.65 1261 9.71 0.16
VG baseline 160 9.60 15.09 999 -0.10
FaST-VGS+ [24] 468 23.07 23.10 15.10 14.32
Seg. SpeechCLIP 72 2879 16.80 19.60 15.69
Phone topline 1536 9.86 16.11 12.23 20.16

5. Conclusions and future work

Here, we propose to use a segmental speech encoder to extract
a sequence of word-like units from speech to improve the uti-
lization of pretrained text models in VGS systems. Our method
distills knowledge from pretrained image and text encoder mod-
els into the speech encoder. We modify the contrastive loss and
the negative sampling to lower computational requirements for
training such systems. We also propose a clustering-based tech-
nique to improve the quality of the negative examples. We out-
perform the cascaded speechCLIP model on the speech-image
and image-speech retrieval task. On the semantic similarity
task, we achieve comparable performance to SOTA systems.

In the future, we want to explore a weighted combination of
layer-wise features from HuBERT as input to our system. We
want to modify our model to also utilize speech-only data via
masked language modeling.
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