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Abstract
Analysis of vocal fold vibration in high-speed videoendoscopy
can aid in the assessment of voice disorders. Glottis segmenta-
tion is a preliminary step of this analysis. Previous deep learn-
ing approaches have focused on fully supervised learning meth-
ods for glottis segmentation which require pixel-level annota-
tion. Collection of pixel-level annotated data is time consum-
ing and tedious. To overcome this challenge, in this work, we
explore the use of bounding box labels for weakly supervised
glottis segmentation. As such, bounding box labels are rela-
tively easier to annotate. The proposed method uses multiple
instance learning to leverage bounding box labels in the form
of bag labels. The method outperforms the baseline method
(trained with bounding box as mask) by 0.20 in terms of dice
score, and matches the performance of fully supervised version
after fine-tuning.
Index Terms: Glottis segmentation, weakly supervised learn-
ing, high-speed videoendoscopy.

1. Introduction
A comprehensive diagnostic voice evaluation is a multidimen-
sional process that consists of several perceptual and instrumen-
tal evaluations [1]. Laryngeal imaging has been the norm for
diagnostic voice evaluation and includes procedures like direct
laryngoscopy, videostroboscopy, VideoKymography (VKG),
and high-speed videoendoscopy (HSV) [2, 3, 4]. In day-to-
day clinical practice, HSV is being widely used to monitor the
changes in vocal fold status as a response to treatment proce-
dures being used. This shift in practice paradigm has resulted in
an increase in the use of vocal imaging procedures, the amount
of imaging data generated, and a strong need for quantitative
measures of the changes that are induced as a result of ongoing
treatment. For accurate clinical diagnosis and, even more so, for
clinical research, quantified yet interpretable parameters are re-
quired. To achieve a completely automated quantitative method
based on HSV recordings, the essential first step is, the segmen-
tation of the glottal area from these images. Since HSV record-
ings consist of thousands of images, manual segmentation of
the image data is not feasible. Therefore, automated segmen-
tation algorithms are necessary to allow accurate, robust, and
efficient segmentation of the glottal area. Figure 1 represents
the glottal area (red contour) drawn over a sample video frame.
Figure 2 indicates sample video frames and pixel-level labels
for segmentation.

Many deep learning-based approaches have been proposed
for glottis segmentation in the literature. However, training
these deep learning models require pixel-level annotated data.
Rao et al. [5] proposed a method that uses fully connected
deep neural networks (DNN) for glottis segmentation. This
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Figure 1: Sample video frame indicating glottal region (red con-
tour) and vocal folds.
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Figure 2: Sample video frames (a) and corresponding ground
truth pixel-level labels indicating glottis segment (b).

method treats segmentation as a pixel-wise classification prob-
lem. To classify each pixel, a feature vector is formed using
a 3 × 3 image patch around that pixel. This feature vector is
passed through a DNN with sigmoid activation. This method
can fail to account for the global context as the receptive field
(3 × 3) for the segmentation is low. Convolutional neural net-
works are well suited for segmentation when compared to fully
connected DNN. The most popular CNN for segmentation is
SegNet [6]. SegNet is a fully convolutional encoder decoder
network. Previous work [7] used Segnet for glottis segmenta-
tion. The work proposed a two-step localization and segmen-
tation network built using SegNet. The segmentation accuracy
depends on the localization network, and bad localization can
lead to poor segmentation results. Another predominant CNN
used for image segmentation is U-Net [8], a network specifi-
cally designed for medical imaging. U-Net is a fully convolu-
tional network with skip connections. The glottis segmentation
using U-Net has been proposed in [9]. Further, a deep con-
volutional LSTM network has been proposed for glottis seg-
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mentation in endoscopic laryngeal high-speed videos [10]. The
LSTM is used to take advantage of the temporal relationship
between sequential frames. The usage of re-training of neural
networks for new recording modalities has been explored in the
work [11].

The neural network approaches proposed in the literature
use supervised learning and need pixel-level annotated data.
The collection of pixel-level annotated data for segmentation is
a time-consuming and arduous task as it requires boundary trac-
ing. Medical imaging faces additional challenges as annotation
needs to be done only by the domain experts [12]. In the case
of glottis segmentation, experts are Speech Language Patholo-
gists. Weakly supervised techniques can help us overcome this
arduous process of pixel-level labeled data collection required
for glottis segmentation. Bounding box level labeling is one
of the labeling method that can be used for weakly supervised
learning. Hsu Cheng-Chun et al. [13] used multiple instance
learning [14] for instance segmentation. Bounding box labels
have not been explored for glottis segmentation. In our work,
we propose a method that uses multiple instance learning (MIL)
to train U-Net end to end for glottis segmentation with bound-
ing box as weak supervision. We use the BAGLS dataset [9]
which contains 59250 HSV images. The proposed weakly su-
pervised model achieves an dice score of 0.75, and outperforms
the baseline (trained with bounding box as mask) by 0.20. This
indicates the importance of MIL formulation to achieve weakly
supervised glottis segmentation. To further improve results, the
U-Net is trained (fine-tuned) with a small subset of pixel-level
lableled data.

2. Proposed method for weakly supervised
glottis segmentation

We propose an approach that uses the bounding box level an-
notation to learn glottis segmentation. The segmentation task is
treated as a MIL problem to train the U-Net [8]. In this section
we provide details regarding the U-Net architecture, formula-
tion of segmentation in terms of MIL, usage of ground truth
labels, and loss functions. Figure 4 represents the overview of
the proposed method.

2.1. U-Net

U-Net is a convolutional neural network which has gained great
success in medical imaging [8]. In this work, we use U-Net for
glottis segmentation which has also been used in the previous
works [9, 15]. U-Net contains standard encoder decoder struc-
ture with skip connections between encoder and decoder layers.
In this paper, we maintain the same architecture as [9] which
contains four encoder and four decoder layers with final layer
as sigmoid activation.

2.2. MIL formulation of glottis segmentation

MIL is a training method that deals with data represented in the
form of sets. These sets are called bags [16]. The supervised
labels are only provided for the bag and not for each instance in
the bag. A bag is labelled as positive for the classification prob-
lem if it consists of at least one instance belonging to the posi-
tive class. A bag is labelled negative if it consists of only nega-
tive class instances. This type of representation can be used for
weakly supervised learning where only the bag label is known.
In our case, the weak supervision is in the form of the bounding
box.

Bnegh

Bposv

Bnegv

Bposh

Figure 3: Bag formation using a sample image. Bnegh and
Bnegv represent sample horizontal and vertical negative bags.
Bposh and Bposv represent sample horizontal and vertical posi-
tive bags.

Given a bounding box level annotation, every pixel outside
the bounding box belongs to the background. A pixel inside the
bounding box can belong to either glottis or the background.
In terms of MIL, pixels outside the bounding box form nega-
tive bags as all such pixels belong to the background (negative
class). The pixels inside the bounding box form positive bags
as some pixels belong to glottis (positive class) and other pixels
belong to background (negative class). We treat every horizon-
tal line and vertical line of pixels that are outside the bounding
box as a negative bag. Each horizontal and vertical line of pixels
inside the bounding box is considered as a positive bag. Here,
the line of pixels is a bag and each pixel on the line is an in-
stance. Figure 3 indicates sample positive and negative bags.
Equations [1,2,3,4] indicate the formation of bags. I is a M ×
N image. Box represents M × N bounding box mask. BnegH

and BnegV indicate horizontal and vertical negative bags respec-
tively. BposH and BposV indicate horizontal and vertical positive
bags respectively.

BnegH = {Bnegh}M−1
h=0

Bnegh = {Ih,j |Boxh,j = 0}N−1
j=0

(1)

BnegV = {Bnegv}N−1
v=0

Bnegv = {Ii,v|Boxi,v = 0}M−1
i=0

(2)

BposH = {Bposh}M−1
h=0

Bposh = {Ih,j |Boxh,j = 1}N−1
j=0

(3)

BposV = {Bposv}N−1
v=0

Bposv = {Ii,v|Boxi,v = 1}M−1
i=0

(4)

2.3. Training U-Net using MIL

Glottis segmentation is a pixel-wise binary classification task.
Sigmoid is used as the activation of the final layer of U-Net.
The output of each sigmoid unit is in the range (0,1). We form
the negative and positive bags as described in section 2.2. The
U-Net is trained on bag level classification accuracy as we only
have knowledge regarding bag level ground truth labels gener-
ated from bounding box. Ground truth label of negative bags is
zero and positive bags is one. Since U-Net generates pixel-level
probabilities, there is a need to convert these pixel-level prob-
abilities into bag probabilities. We derive the probability of a
bag belonging to the positive class as the maximum of sigmoid
outputs in the final layer corresponding to pixels (instances) be-
longing to the bag. This can be generated by horizontal and
vertical max-pooling of sigmoid outputs as indicated in Fig-
ure 4. Equations [5,6,7,8] represent the derivation of predicted
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Figure 4: Training U-Net with MIL.

bag labels from M × N sigmoid output P. PnegH and PnegV in-
dicate predicted labels of horizontal and vertical negative bags
respectively. PposH and PposV indicate predicted labels of hori-
zontal and vertical positive bags respectively. The binary cross-
entropy [17] is used as a bag level loss function. MIL trained
with a bag level loss might have poor instance-level accuracy
(segmentation) [16]. To tackle this, in addition to bag level loss,
pairwise loss function is used to enforce neighbourhood consis-
tency. This loss function is calculated between each pixel and
it’s 3 × 3 neighbourhood pixels. Equation 9 indicates the loss
function calculated between pixel i and pixel j, where P is the
sigmoid output of U-Net and I is the input image.

PnegH = {Pnegh}M−1
h=0

Pnegh = max{Ph,j |Boxh,j = 0}N−1
j=0

(5)

PnegV = {Pnegv}N−1
v=0

Pnegv = max{Pi,v|Boxi,v = 0}M−1
i=0

(6)

PposH = {Pposh}M−1
h=0

Pposh = max{Ph,j |Boxh,j = 1}N−1
j=0

(7)

PposV = {Pposv}N−1
v=0

Pposv = max{Pi,v|Boxi,v = 1}M−1
i=0

(8)

PairwiseLoss = (1− (Ii − Ij)
2) ∗ (Pi − Pj)

2 (9)

3. Experiments
3.1. Experimental Setup

We train the U-Net with the bounding box level labels using
multiple instance learning with Bag loss and Pairwise loss func-
tions. We term this model as MIL. For baseline, we use the
U-Net model trained with bounding box mask as segmentation
mask using dice loss [17]. This model is termed as BoxM.
Further, to compare the MIL with fully supervised version, we

train the U-Net proposed in [9] with pixel-level annotated la-
bels using dice loss. This model is termed as FullSup. BoxM,
MIL, and FullSup use the same U-Net model, but each model
is trained using different labels and loss functions. We show
that MIL performs better than BoxM, and matches performance
of FullSup when fine tuned with small fraction of pixel-level
labelled data. The importance of using pairwise loss function
to boost the segmentation accuracy is also shown. The mod-
els are implemented in Keras [18] with TensorFlow [19] as the
backend.

3.2. Dataset

We use the dataset presented in the work [9]. This data set
consists of 59,250 high-speed videoendoscopy images collected
from 640 subjects. We divide these 640 subjects into 5 folds for
cross-validation. Each fold contains 11850 images. The train-
ing data consists of 3 folds, validation data consists of 1 fold,
and the remaining 1 fold is used as test data. The dataset does
not contain bounding box labels, hence, we generate them using
the ground truth segmentation mask annotation. A tight bound-
ing box is derived from the pixel-level annotation such that the
box intersects the mask’s outermost pixel in all four directions.

3.3. Evaluation Metric

Following the previous works [5, 7, 10, 15], we use dice score
[20] as the evaluation metric. Equation 10 indicates the formu-
lation of dice score between the prediction (P) and the ground
truth (G), where both P and G are binary images of same size.
Class one indicates pixel belongs to glottis and class zero repre-
sents background pixel. N indicates the number of pixels with
value one. During the evaluation, pixel-level annotation is used
as ground truth for all the models.

Dice(P,G) =
2×N(P ∩G)

N(P ) +N(G)
(10)
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3.4. Results

3.4.1. MIL performance

We compare the results achieved by BoxM, MIL, and FullSup.
Figure 5 represents the box plot of the dice score achieved by
all methods across 5 folds. The average dice scores achieved
by BoxM, MIL, and FullSup are 0.55 (±0.22), 0.75 (±0.19),
and 0.84 (±0.20) respectively. MIL clearly outperforms BoxM
indicating that the MIL formulation of segmentation using the
bounding box is effective compared to directly using the bound-
ing box as mask for segmentation. Figure 6 indicates the sam-
ple outputs of BoxM, MIL, and FullSup. As seen in Figure 6,
BoxM tends to predict box shaped segments rather than the glot-
tis shape. FullSup forms the upper bound for MIL performance
as the FullSup is trained with pixel-level annotations and it uses
the same U-Net architecture as MIL. On the other hand, MIL
uses only the bounding box level labels for training. The exact
glottis edge information is not used in the training which can
lead to a small number of incorrect predictions at the edges as
seen in Figure 6. But, despite the lack of information about the
exact edges during the training phase, MIL is able to achieve a
dice score of 0.75 on the test data.

BoxM MIL FullSup0.0
0.2
0.4
0.6
0.8
1.0

Di
ce

 Sc
or
e

Figure 5: Boxplot of dice score achieved by BoxM, MIL, and
FullSup.

MIL results can be improved by fine-tuning it with a small
percentage of pixel-level labeled images as it has to refine a
small number of incorrect predictions near the glottal edges. Ta-
ble 1 indicates dice score achieved by BoxM and MIL models
after fine-tuning with p% of pixel-level labeled data. FullSup
trained with p% of training data is also presented. As p in-
creases, the dice score achieved by MIL and BoxM improves.
For p ≥ 0.5, MIL matches FullSup trained with whole data.

Table 1: Dice score of BoxM and MIL after fine tuning with
p% (= N number of images) of pixel-level labelled data. The
corresponding FullSup model trained with same data is also
presented.

Dice Score
p% N BoxM MIL FullSup
0 0 0.55 0.75 –

0.01 4 0.60 0.78 0.01
0.05 23 0.78 0.80 0.40
0.1 47 0.80 0.81 0.01
0.5 237 0.78 0.83 0.01
1.0 474 0.75 0.83 0.21

3.4.2. Importance of pairwise loss function

We compare the dice score achieved by MIL trained without
pairwise loss (NoPair) and with pairwise loss (Pair). Figure 7b
represents the box plot of dice score achieved by NoPair and

Input Image Groundtruth BoxM MIL FullSup

(a)

(b)

(c)

0.45 0.92 0.95

0.56 0.87 0.96

0.41 0.78 0.83

Figure 6: Sample predictions (a, b, c) of BoxM, MIL, and Full-
Sup along with corresponding input image and ground truth.
Dice score is indicated at the bottom of the prediction.

Input Image Ground truth

NoPair Pair

(a) (b)

Figure 7: Sample prediction of NoPair and Pair along with cor-
responding input image and ground truth (a). Boxplot of dice
score achieved by NoPair) and Pair (b).

Pair. The average dice scores of NoPair and Pair are 0.65 (±
0.18) and 0.75 (± 0.19) respectively. Pair outperforms NoPair
indicating the importance of pairwise loss function. Figure 7a
represents the sample output of NoPair and Pair. Without pair-
wise loss, MIL tends to learn only the discriminative parts of
the glottis because of the max pooling function used to calculate
bag level probabilities (Equations [5-8]). Pairwise loss function
helps in learning less discriminative parts by adding spatial con-
sistency constraint.

4. Conclusion
The major challenge of deep learning approach for glottis seg-
mentation is the need of pixel-level labelled data which is ex-
pensive to collect as it requires labelling from experts. This
challenge posits the need to explore deep learning methods that
use less or weakly labelled data. One such approach is weakly
supervised learning. We propose a weakly supervised glottis
segmentation method using bounding box labels which are rel-
atively easy to collect. The proposed method uses multiple in-
stance learning technique where the bounding box label are con-
verted to bag labels. The proposed MIL outperforms the base-
line method, and matches the performance of fully-supervised
method after fine-tuning. In future work, we would like to
explore weakly supervised learning using image-level labels
(whether glottis opening is present or not). Another direction
will be to work on self-supervised learning which requires ex-
ploration on pretext task formulation.
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