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Abstract
Conformer-based end-to-end automatic speech recognition

(ASR) models have gained popularity in recent years due to
their exceptional performance at scale. However, there are sig-
nificant computation, memory and latency costs associated with
running inference on such models. With the aim of mitigat-
ing these issues, we evaluate the efficacy of pruning Conformer
layers while fine-tuning only on 20% of the data used for the
pre-trained model. We score Conformer layers using correla-
tion, energy, and gradient-based metrics and rank them to iden-
tify candidate layers for pruning. We also propose an iterative
pruning strategy which monitors and prunes layers that are con-
sistently ranked low by the metrics during training. Using our
methods, we prune large pre-trained offline and online (stream-
ing) models by 20% and 40% with little impact on performance,
while outperforming a strong knowledge distillation baseline.
Index Terms: Speech recognition, Conformer model, one-shot
pruning, iterative pruning, efficient inference.

1. Introduction
End-to-end (E2E) ASR systems are increasingly supplanting
conventional hybrid models owing to their superior perfor-
mance. Various encoder architectures and decoding techniques
have been proposed in the literature to train E2E models, with
the most popular encoder architectures being LSTMs, Trans-
former [1] and Conformer [2] and decoding strategies being
Connectionist Temporal Classification (CTC) [3, 4], Transducer
[5], and Attention decoder [6, 7] or a combination of the previ-
ous three. Due to their exceptional performance, Conformer
encoders [2] combined with either CTC or Transducer are ubiq-
uitously used to train E2E-ASR models.

With the availability of thousands of hours of speech data
and efficient training strategies, comes the ease and necessity
to train larger models with higher capacity for improved per-
formance. It has become increasingly prevalent to utilize ASR
models that feature large encoders with more than 150 mil-
lion parameters. The recently released Whisper model [8] was
trained on 680,000 hours of data and the large version of the
model has 1.5 Billion parameters. Such large-scale models have
large computation and memory costs, to use them at inference
time. This motivates the use of techniques like Knowledge Dis-
tillation (KD) and pruning to reduce model size and thus reduce
costs while either maintaining performance or have minimal
degradation compared to the full model. Knowledge Distilla-
tion has been well explored in literature [9, 10] and is also well
studied and used in ASR to produce lightweight student models
[11, 12, 13, 14].

Pruning is another popular technique used in vision and
NLP to reduce model size [15] but fairly new in ASR [16, 17,

18, 19]. A node pruning method based on node and weight
entropy is introduced in [20]. A scoring function is used to re-
move a significant number of nodes resulting in high real-time
factor (RTF) gains and without much loss in word accuracy.
[21] applies the Lottery Ticket Hypothesis for structured prun-
ing and finding efficient sparse models across multiple archi-
tectures like CNN-LSTM, RNN-Transducer, and Transformer
models. They show that the sparse light-weight models ob-
tained from large models generalize well with minimal to no
loss in performance. [22] introduced on-demand layer prun-
ing where entire Conformer layers are removed using an itera-
tive search method augmented with intermediate CTC. Despite
some success, the main limitation of aforementioned pruning
approaches in speech recognition is that the training is lim-
ited to less than 1000 hours. Typically, the models trained on
such small amount of data do not require deep encoders to pro-
vide high performance. At the same time, the performance of
the models with varying depth differs quite significantly when
trained on large-scale labeled data [8].

In this work, we investigate the impact of pruning a 150M
parameter model that was pre-trained on 50,000+ hours of la-
beled data. The overall pipeline involves three steps: training a
large pre-trained model, pruning the model and fine-tuning the
resulting small model. Specifically, we focus on pruning Con-
former layers and reduce the depth of the encoder network dur-
ing fine-tuning without much loss in accuracy. We use a variety
of metrics for scoring, ranking the importance of encoder lay-
ers and showcase them as an effective way of pruning for ASR.
We also present a strategy for iterative pruning of encoder layers
over multiple epochs during training. We show that our methods
help approach near pre-trained model performance while also
achieving better performance than KD. Our main contributions
are: (1) For Conformer-based E2E models, we demonstrate our
layer pruning approach as a viable alternative to training a stu-
dent model using Knowledge Distillation; (2) We present mul-
tiple metrics to rank the importance of a Conformer layer for
pruning; and (3) We explore an iterative pruning approach to
reduce model depth over multiple fine-tuning epochs.

2. Model Architecture
The models are trained using a joint CTC-Attention architecture
[23, 24], which can be broken down into three main compo-
nents: Shared Encoder, CTC Decoder, and Attention Decoder.
During inference, only the shared Conformer encoder and CTC
decoder are used to ensure a low inference latency.

2.1. Conformer Encoder

The Conformer Encoder is composed of multiple Conformer
layers stacked on top of each other. Each Conformer layer is a
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Figure 1: Schematic diagram of our proposed pruning ap-
proach. Figure (a) shows one-shot pruning and fine-tuning and
figure (b) shows iterative pruning strategy.

modification of the Transformer layer which adds convolution
modules along with self-attention modules. The self-attention
learns global interactions whilst the convolutions efficiently
capture the relative-offset-based local correlations, achieving
the best of both worlds and leading to improvements in ASR
performance. A standard Conformer layer contains two feed
forward modules (FFN) sandwiching the multi-headed self-
attention (MHSA) module and the convolution module. L con-
former layers stacked on top of each other form the Conformer
encoder [2]. The output from the final layer (XL) of the shared
encoder is fed into a shallow transformer decoder and the CTC
decoder.

2.2. Connectionist Temporal Classification

CTC helps to solve the sequence prediction problem using
conditionally independent monotonic alignments. It aligns T -
length encoder output sequence x ∈ RT×D and K-length
target symbol sequence y = {y1, y2, ..., yK ∈ V }, where
D is the dimension of x and V is the vocabulary. Using
an additional blank symbol b and defining the alignment as
a = {a1, a2, ..., aT ∈ V ∪ {b}}, CTC computes the likelihood
of the target sequence y as:

PCTC(y|x) =
∑

a∈β−1(y)

P(a|x), (1)

where P (a|x) denotes the alignment probability and β−1(y) is
the set of possible alignments that are compatible to y. Dur-
ing inference, the most probable alignment is found by ei-
ther greedy or beam search decoding, allowing fast and non-
autoregressive inference.

3. Model Pruning
In this section, we define four different metrics that can be used
to score the importance of a Conformer layer. The metric scores
are then used to rank Conformer layers and the least ranked
layers are pruned from the encoder.

The notation for this section is as follows: let X ∈
RB×D×T be the input tensor to a layer, where B is the batch

size, D is the size of the feature dimension, and T is the length
in time. We use the notation Xb·· to indicate the matrix of size
D × T , which is a slice of the tensor X , b ∈ {1, . . . , B}. We
define the metrics next.

3.1. Metrics

Correlation The correlation between the inputs and outputs of
a layer hints at the amount of change induced by it. Early lay-
ers induce a lot of change as they convert input features into
hidden representations. A high correlation score of a layer indi-
cates that it is unimportant. The correlation metric is defined as
follows:

Sρ =
1

B

B∑

b=1

1

TD

∑

j

diag
(

vec(Xi
b··)vec(Xi−1

b·· )T
)
j

(2)

where vec(Xb··) is the vectorized form of the matrix Xb··, B
is the batch size, the superscript Xi−1 denotes the input to a
layer, Xi denotes the output, and diag(·) is the diagonal of the
matrix resulting from the outer-product of the two vectors.

Energy In the energy-based metric [25], we rank the impor-
tance of Conformer layers based on the energy of the output of
that layer. The higher the energy of the output, the more impor-
tant the Conformer layer to maintain performance. The energy
metric is calculated as follows:

SE =
1

DT

B∑

b=1

D∑

d=1

∣∣∣λd − tr(Xb··X
T
b··))

∣∣∣ (3)

where tr(·) is the trace of Xb··X
T
b··, and λd for d ∈ {1, . . . , D}

are the eigenvalues of Xb··X
T
b··.

Gradient/Hessian The previous two metrics are calculated dur-
ing the forward call of the model. We also explore ranking of
a Conformer layer by computing its importance during a back-
ward call. The absolute gradient flowing through a layer hints
that a layer still has the capacity to learn more from the training
data. Layers are ranked according to the net first-order (gradi-
ent) and second-order (Hessian) derivatives of their correspond-
ing parameters. The higher the absolute derivatives, the higher
the rank of a Conformer layer. Scores are computed as follows
(we show the first-order case only for conciseness):

S =
1

B

B∑

b=1

vec(Xi−1
b·· ) · ∇k

Xi(vec(Xi
b··)), (4)

where Xi−1 denotes the input, and Xi denotes the output of a
layer. We use torch autograd functions to compute the gradients
of the layers. For k = 1, S = SG and for k = 2, S = SH .

3.2. Conformer Layer Pruning

As shown in Figure 1, we present two approaches for pruning a
Conformer encoder:

One-Shot Pruning In this approach, the Conformer layers of a
pre-trained model are scored and ranked using one of the pre-
viously defined metrics. The lowest ranked layers are removed
in one-shot as determined by the pruning percentage and the
resulting smaller Conformer model is fine-tuned for M epochs.

Iterative Pruning In this approach, we prune the Conformer
layers of a pre-trained model in an iterative fashion over multi-
ple epochs. As shown in Figure 1 (b), we train for m epochs,
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Table 1: Comparison of WER for various scoring metrics
trained in offline mode using the one-shot pruning approach.
CV: Mozilla Common Voice, LS: Librispeech

Model Method Datasets

WSJ Vox SLURP CV LS (test) DSTC-2
test92 Test clean other

20-layer - 4.6 9.1 19.4 9.2 3.5 7.0 7.9

16-layer

Energy 4.9 9.5 20.0 10.3 4.2 8.4 7.4
Correlation 4.8 9.1 19.7 9.4 4.1 8.3 7.0
Gradient 4.7 9.3 20.3 9.8 4.3 8.4 7.5
Hessian 4.9 10.3 25.6 10.5 4.5 9.0 8.1

12-layer

Energy 4.8 9.8 20.5 10.2 4.7 9.2 7.6
Correlation 4.7 9.8 20.3 10.1 4.6 8.9 7.9
Gradient 4.9 9.6 21.9 10.6 4.5 9.1 7.9
Hessian 5.0 9.9 22.2 13.0 5.0 10.4 8.5

score and prune n layers at the mth epoch, training the resulting
model for another m epochs and so on until the desired prun-
ing percentage is reached. Further, we can prune the layers by
checking for consistency of the ranks assigned to Conformer
layers, i.e., we can prune layers consistently ranked low over
m epochs. To measure consistency of the rank of a Conformer
layer, we measure its importance using our metrics at each train-
ing epoch and then use average rank during the pruning epoch
to decide which layer is to be pruned. The consistency equation
is defined as follows:

Cµ =
1

m

m∑

e=1

(Se
µ), (5)

where Cµ is the consistency rank of a layer and m is the total
number of epochs over which the metric score of a layer is mea-
sured, and Se

µ is one of the scores for the metrics defined above
for epoch e, so that µ ∈ M = {ρ,E,G,H} (correlation, en-
ergy, gradient, or Hessian).

4. Experimental Setup
4.1. Data

Train We use two different-sized corpora: a large 50K+ hour
English corpus and a 10K hour subset of this corpus, sampled
from in-house paired audio and text data. The datasets are a
good mix of 8kHz (upsampled during training) and 16kHz sam-
pling rate and include a number of different accents, speakers,
and background noise. We pre-train the model on the 50K+
hour corpus and the rest of pruning and distillation experiments
are conducted on the 10K hour corpus (20% of overall data).
Evaluation We use six datasets for evaluation: (1)
WSJ/test eval92 (test92), from which we use test92 [26], pre-
pared using Kaldi’s [27] WSJ recipe, which is 0.7hrs long; (2)
Voxpopuli [28], from which we use the English test partition,
which is 4.9hrs long; (3) SLURP: we use the test partition of this
dataset [29] containing 2974 sentences totaling 10.3 hours; (4)
Common Voice: we use version 5.1 of Common Voice data [30],
with 16028 test utterances totalling 25.9 hrs; (5) Librispeech:
we use the test-clean and test-other splits of Librispeech data
[31]; (6) DSTC-2: we use the test split of the DSTC-2 dataset
[32]. We report word error rate (WER) on all six datasets.

4.2. Models

To test our layer importance scoring metrics and iterative prun-
ing approach, we pre-train a 20-layer Conformer model (150M
parameters) using a joint CTC-Attention architecture described
in Section 2. This model is used to initialize the parameters of
the models to be pruned and trained. This model also serves as
the teacher model to train student models.

Table 2: Comparison of one-shot pruning approach with pre-
trained and distilled models. The pruning models used for com-
parison are trained in offline mode using correlation scoring
metric.

Model Method Datasets

WSJ Vox SLURP CV LS (test) DSTC-2
test92 Test clean other

20-layer Trained 4.6 9.1 19.4 9.2 3.5 7.0 7.9

16-layer
Trained 5.2 10.2 21.6 11.0 4.7 9.0 7.8
Distillation 5.3 9.7 20.9 10.1 4.5 8.6 7.4
Pruning 4.8 9.1 19.7 9.4 4.1 8.3 7.0

12-layer
Trained 4.9 10.3 22.5 12.1 5.0 9.6 8.4
Distillation 5.0 10.3 21.6 11.1 4.8 9.2 7.8
Pruning 4.7 9.8 20.3 10.1 4.6 8.9 7.9

Offline Models All our Conformer models are trained with
the CTC and inter-CTC objectives. The pre-trained model
has a 20×1 architecture (encoder×decoder depths). We use a
Macaron-style Conformer with layers having 512 hidden units,
8 attention heads and 31 convolutional filters. We use a vocabu-
lary size of 2048 to train our models. During inference, we use
full left and right context.
Online Models Similar to [33], we train a unified streaming and
non-streaming model with Conformer architecture (as above),
trained with dynamic chunk training (DCT) implemented with
dynamic chunk attention masks for the self-attention matrices.
For the convolution modules, we use dynamic chunk convolu-
tion (DCConv) instead of causal convolution which makes bet-
ter use of the in-chunk future context and significantly improves
streaming performance while maintaining non-streaming per-
formance. We run inference using a chunk size of 64, with a
hop size of 32 frames and 128 frames of left context.

4.3. Knowledge Distillation and Pruning

We train two student models (16-layer and 12-layer) with the
pre-trained teacher model trained on 50K+ hours of data. We
use a simple frame-based knowledge distillation approach, with
the objective function of reducing the cosine distance between
the logits of the final layer between teacher and student mod-
els (as in [34] but without the teacher classifier). The student
models are initialized with a pre-trained model of same size,
and trained with 10K hour dataset. For pruning, we use the
pre-trained model to initialize the parameters of the model to
be pruned and apply our scoring metrics on this pre-initialized
model. We showcase our experiments on 20% and 40% prun-
ing, i.e., 16-layer and 12-layer pruned models. The metric
scores are calculated using a validation set. We compare all four
metric-based approaches and choose the best metric to conduct
the iterative pruning experiments. For each training mode, we
evaluate two models with number of iterations set to 2 and 4.
We choose the epoch interval for iterative pruning based on the
number of layers to be pruned, thus allowing the model suffi-
cient time to learn before each iteration of pruning.

4.4. Training and Decoding

We perform all of our experiments in ESPnet [35] using AWS
EC2 P4d instances. All our models are trained on 16kHz audio,
with SpecAugment [36] applied over 80-dimensional extracted
filter-bank features. We pre-train a 2048-token sub-word model
from our training data using SentencePiece tokenizer [37]. We
use Adam [38] with a learning rate of 5e-4, and a warm-up
scheduler [1] with 50k steps, and train all models for 30 epochs.
During inference, we use beam search CTC decoding with a 4-
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Table 3: Iterative pruning for offline and online models. Layers are pruned based on their input/output correlation. The “Pruning
parameters” columns indicate the number of layers pruned at the corresponding epoch interval (EI) for each iteration before training
continues. Bold numbers show improvements of more than 0.1 absolute WER over the one-shot baseline.

Mode Model Method Pruning parameters Datasets

# Iterations (layers, EI) WSJ Voxpopuli SLURP Common Voice Librispeech (test) DSTC-2
test92 Test clean other

Offline

20-layer Trained – – 4.6 9.1 19.4 9.2 3.5 7.0 7.9

12-layer One-Shot – – 4.7 9.8 20.3 10.1 4.6 8.9 7.9
(pruned) Iterative 2 (4, 4) 4.8 9.7 20.3 10.0 4.4 8.9 7.4

Iterative 4 (2, 2) 4.7 9.7 20.2 10.0 4.5 8.8 7.4

Online

20-layer Trained – – 5.6 10.5 23.6 13.2 5.5 11.5 15.4

12-layer One-Shot – – 6.3 11.9 26.7 16.3 6.4 13.1 12.3
(pruned) Iterative 2 (4, 4) 6.3 11.9 26.6 16.2 6.4 13.0 12.1

Iterative 4 (2, 2) 6.5 11.8 26.7 15.9 6.3 12.8 11.8

gram language model (LM) trained on the transcriptions of the
50K+ hour corpus. The beam size is set to 100 and the LM
weight is set to 0.6.

5. Results
5.1. Comparison of Metrics for One-Shot Pruning

In Table 1, we compare the performance of our scoring metrics
to fine-tune both 20% and 40% pruned models. From the table,
we see that the correlation metric performs the best and finds the
most suitable Conformer layers to be removed to reduce model
depth. Compared with the from-scratch trained 20% and 40%
models shown in Table 2, we see that all our pruning metrics
result in a better performing model.

Figure 2 presents the correlation-based importance scores
for Conformer layers without any pruning. We observe a no-
ticeable difference in importance scores and the ranking of Con-
former layers over the course of training. We observe that early
layers are consistently important, possibly to learn the input au-
dio feature transformations. After a certain number of epochs,
some layers lose importance possibly due to saturation in infor-
mation gained from the data over epochs.

5.2. Comparison of Pruning and Knowledge Distillation

Table 2 shows results for pre-trained 20-layer model as well
as a comparison between smaller models trained using differ-
ent techniques. As expected, the smaller models perform worse
than the pre-trained model on almost all datasets. We see that
for both the 20% (16-layer) and 40% (12-layer) models, the
pruned models perform best. When comparing against KD, our
one-shot pruning approach achieves a relative WER (WERR)
improvement of 6.6% and 4.6% averaged across all datasets.
Our pruning approach best closes the gap with the 20-layer
model having a minimum 1.5% WERR degradation on SLURP
test set and a maximum WERR degradation of 18.5% on Lib-
rispeech test-other dataset. Surprisingly, we see that our pruned
model performs better than the pre-trained model on DSTC-2.

5.3. Iterative Pruning in Offline and Online Models

We compare our iterative pruning approach by computing the
scoring metrics and pruning the model layers across multiple
epochs using the technique mentioned in Section 4.3.

Offline Experiments From Table 3, we observe that the itera-
tive pruning approach achieves similar performance to the one-
shot pruning in the offline mode. We also observe that iterative
pruning shows improvement with some test sets when using a
higher number of pruning iterations. This improvement is also

Figure 2: Correlation-based importance scores for Conformer
layers over the course of 10 epochs of training.

more prevalent in the online mode. We conjecture that iterative
pruning would likely outperform one-shot pruning for models
with much higher capacity that are intended to be adapted to
unseen target acoustic conditions.

Online Experiments We present the online inference results in
Table 3, where we observe that the degradation of performance
is much larger than that of offline models (and running offline
inference). We hypothesize that intermediate layers are more
important for online inference, given the limited context that
these models have access to. Moreover, these models are fine-
tuned with less data (10K hrs) than the teacher model (over 50K
hrs), which we observe makes a difference in the performance
of the unified streaming models.

6. Conclusion

In this work, we demonstrate scoring-metric-based Conformer
layer pruning as a viable alternative to distillation for training
smaller models. Our experiments show that correlation metric-
based pruning leads to the best-performing smaller models. We
also proposed an iterative pruning technique to reduce the depth
of the model across multiple epochs. Our findings indicate that
increasing the number of pruning iterations results in more ef-
fectively pruned models. Future work could focus on prun-
ing individual components of the Conformer layers (either con-
volutions or attention heads) and explore threshold-based ap-
proaches for automated iterative pruning.
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