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Abstract
We present a multi-speaker silent speech recognition system
trained on articulator features derived from the Tongue and Lips
corpus, a multi-speaker corpus of ultrasound tongue imaging
and lip video data. We extracted articulator features using the
pose estimation software DeepLabCut, then trained recogni-
tion models with these point-tracking features using Kaldi. We
trained with voiced utterances, then tested performance on both
voiced and silent utterances. Our multi-speaker SSR improved
WER by 23.06% when compared to a previous similar multi-
speaker SSR system which used image-based instead of point-
tracking features. We also found great improvements (up to
15.45% decrease in WER) in recognition of silent speech using
fMLLR adaptation compared to raw features. Finally, we in-
vestigated differences in articulator trajectories between voiced
and silent speech and found that speakers tend to miss articu-
latory targets that are present in voiced speech when speaking
silently.
Index Terms: silent speech interfaces, silent speech recogni-
tion, articulator pose estimation, ultrasound imaging, lip read-
ing

1. Introduction
A device to allow speech(-like) communication without an au-
dible speech signal is known as a silent speech interface (SSI).
An SSI is intended to serve as a communication aid in situations
where a user has either lost their ability to speak or is in an en-
vironment that is very noisy, or conversely where silence must
be maintained [1]. Differing approaches have been explored to
achieve this. Many methods, for example, assume the ability
to move the articulators but that voicing is not possible. The
communication that is restored by an SSI can take on different
forms, such as a vocoder to restore the speech itself [2], or silent
speech recognition (SSR) systems [3, 4]. The latter approach is
the subject of this paper.

Much of the previous work on SSR has relied upon ei-
ther point-tracking or imaging-based articulography. Electro-
magnetic articulography (EMA) is a well-known example of a
point-tracking articulography technique, whereby sensor coils
are attached directly to the articulators and their movements are
tracked using a set of alternating electromagnetic fields. Mean-
while, examples of imaging-based articulography techniques
would be ultrasound tongue imaging (UTI) and standard video
of the mouth area. In UTI, a standard B-mode ultrasound probe
placed submentally can show the surface of the tongue as a
bright edge in video sequences. Numerous studies have used
both these types of data (e.g., EMA [5] and optical/ultrasound
video [6, 3], respectively).

Both methods have distinct advantages and disadvantages.

Since UTI requires only an external probe to produce an image
[7], it in principle offers a real-time SSI system that is light-
weight and more convenient than using sensor technology like
EMA [2] which is costly and invasive. However, while EMA
can track specific articulator points over time reliably, ultra-
sound images may have artefacts like multiple or split visible
tongue contour edges, frame discontinuities, or shadows from
the jaw anatomy, which may obscure parts of the tongue [7].
The image is also speckled, which may introduce noise depend-
ing on the use case of the ultrasound data. An advantage of
using EMA sensor tracking is that it is cleaner and easier to
extract articulator movements. Because the sensors track move-
ment in real Cartesian space, it can also be easier to calculate
metrics relating to the position of the articulators over time. Ul-
trasound and other image data conversely have no direct track-
ing of the points of anatomy, and typically require some ex-
traction or transformation to be performed in order to make it
usable for study. Various methods have been used for this, in-
cluding using the images themselves in some transformed way
as an input to a model, or extracting features from the images
in a more sophisticated feature extraction network [6, 8, 9], for
example. Image-processing methods like edge detection, where
the tongue contour is discovered by looking for a point of high
contrast in the ultrasound image, are useful for some metrics,
but because they rely on a contrastive edge which is present in
the image, it is not completely reliable due to the noise [7].

In this work, we evaluate an approach to articulatory fea-
ture representation which is meant to combine the best of both
worlds. We use an “off-the-shelf” pose estimation neural net-
work model DeepLabCut (DLC) [10] to track specified points
in video sequences. DLC implements “markerless pose estima-
tion” - it is software which allows the user to train a model to
find points of interest (indicated by a hand-marked training set)
in a series of video frames. Previous work has been done to fine-
tune DLC on ultrasound images of the tongue and video images
of the lips [11], who used it to mark 22 points of anatomy: 14
on the tongue and 8 on the lips (see Fig. 1). The outputs of this
model are thus x,y coordinates for articulatory points of interest.
We then use these x,y coordinates as input to a speech recog-
nition system. This method differs from other tongue contour
extraction methods in that it does not rely on a high-contrast
edge in the image, and is less susceptible to noise interruption.
These articulator point estimates have been shown by [11] to
be closer to those made by human hand-labellers than edge de-
tection methods, and are also correlated with EMA sensor po-
sitions. Since they are derived from UTI data, it is possible
to track points which may be difficult to track with a physical
sensor (e.g. hyoid). DLC thus allows us to make use of con-
venient and cheap ultrasound and image data while preserving
the Cartesian nature of sensor data. These attractive attributes

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1149 10.21437/Interspeech.2023-1966



motivate our investigation of using DLC features for an SSR
system.

2. Dataset: Tongue and Lips corpus
The Tongue and Lips corpus (TaL) [12] contains the synchro-
nized tongue ultrasound and lip video data from 82 different
speakers of English. An ultrasound probe placed under the chin
of a speaker captures a sagittal view of the tongue, while a cam-
era placed in front of the mouth captures a frontal view of the
lips. These recordings are captured during different kinds of
utterances: spoken silently, spoken aloud, spontaneous speech,
whispered speech, and swallows. Some utterances are spoken
in both silent and voiced modalities, and some utterances are
unique to a modality. The transcriptions of the utterances and
the audio itself are also included. Sentences for read-speech
utterances are taken from a variety of sources, including the
Rainbow Passage, the Harvard Sentences, the TIMIT Corpus,
the VCTK corpus, and the Librispeech corpus.

Most previous work on SSIs has resulted in speaker-
dependent models due to the sort of challenge data available and
the expense of collecting such data [8, 9, 5]. In contrast, the TaL
corpus allows us to build and explore speaker-independent SSR
systems. In Ribeiro et al. (2021) [3], a multi-speaker SSR sys-
tem was built using data from the TaL corpus. The raw tongue
and lip image data was used as input to a feature extraction net-
work, where the targets were the time-aligned phone states from
a monophone system trained using the audio data provided in
TaL. A bottleneck layer was included in this extraction network,
which was used as the input to an ASR system. In order to es-
tablish the overall improvement to a multi-speaker SSR using
DLC features as opposed to bottleneck features derived from
raw image data, we refer to their work as the basis for ours in
making design decisions, and use their results as a baseline.

2.1. Silent speech versus normally-voiced speech

While the TaL corpus contains a large amount of data for voiced
speech, it has less data for silent speech (11.06 hours compared
to 2.34 hours). There is insufficient data to train a model on
silent-speech data alone, and so we need to carefully consider
the differences between silent and voiced speech and employ
domain adaptation methods to obtain a stronger model.

Silent speech is defined by a lack of pulmonary airstream
and laryngeal activity while maintaining articulatory activity
[13]. Silent speech is therefore characterized by a lack of au-
ditory feedback and a lack of intraoral pressure. When we
speak aloud, there is evidence to suggest that we incorporate
information about the auditory sensory information into cor-
rective actions by articulators [14, 15]. Patients with cochlear
implants will change their F0 when the implant is off versus
on. The spectral characteristics of the vowels speakers produce
when they lack auditory feedback changes as well. It has also
been shown that speakers take different strategies with respect
to speaking rate and articulatory space when producing silent
speech compared to voiced speech [16, 17, 18, 19, 20]. These
observations all indicate the TaL speakers are likely to have ar-
ticulated differently when speaking without auditory feedback.

As a result of these different characteristics, speech recog-
nition models which are trained on the articulator data of voiced
speech may suffer performance losses when used to decode
silent speech, because of the mismatches between the modali-
ties. A systematic review of the TaL corpus has shown that over-
all, silent speech is hypoarticulated and produced at a slower

(a) Tongue (b) Lip

Figure 1: Points of anatomy marked by DLC. The tongue points
correspond to the vallecula (1), root (2-3), body (4-5), dorsum
(6-7), blade (8-9), tip (10-11), short tendon (12), mandible (13),
and hyoid (14). The midline of the lip (D,E) corresponds to the
middle of the philtrum- the other points are midway between the
midline and commissures (A,H).

rate [3]. However, that study also showed that these differences
were not correlated with the WER of their speech recognition
system. In order to gain insight into the nature of the articula-
tor trajectory differences between modalities and how they af-
fect our SSR system, we will analyse the articulator trajectories
from corresponding silent and voiced utterances from the TaL
corpus.

3. Data processing with DeepLabCut
The first step in building our speech recognition system is to ex-
tract articulator input features using DLC. DLC expects videos
as input, whereas the UTI data in TaL exists as raw ultrasound
scanline data. We used the UltraSuite Tools [21] to convert the
raw TaL data to the required video format. As part of that pro-
cess we downsampled the ultrasound data from 80Hz to 60Hz
frame rate, which both matches the lip video frame rate and is
also the frame rate DLC expects. Aligning the data streams at
the same frame rate is a straightforward way to obtain a sin-
gle feature vector corresponding to all articulator points at each
time point. The tongue and lip videos were then run through
DLC using the pre-trained articulator model [11]. The result-
ing output comprised two separate batches of csv files, one for
the lip videos and one for the tongue videos. Each csv file con-
tained three columns for each articulator: x position (in pixels),
y position, and confidence about the prediction. The tongue and
lip point data was then combined to give a single vector of all
articulator coordinates per frame. These articulator points are
illustrated in Fig. 1.

4. Experiments
We created a pipeline to train and test our features using Kaldi’s
nnet2 recipe [22, 23]. We followed a typical DNN-HMM
pipeline for our models (see Fig. 2), similar to the one used
by Ribeiro et al. (2021). We trained two DNN-HMM models
for each condition, one trained on fMLLR-adapted features [24]
and one trained on “raw” DLC articulator coordinate features.
We chose fMLLR adaptation because it entails a model-based
transformation of the features in terms of mean and variance.
Therefore, fMLLR on the features of silent speech data when
the features are the x,y coordinates of the articulator points is
essentially a transform of all the articulator positions in space.
Since previous work had shown differences in how silent speech
behaves spatially (i.e. hypoarticulation), we believed this would
make the silent features more like the voiced features. Our over-
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all training process was as follows:
• Mean and variance normalization per utterance.
• Train an initial monophone model on these features and their

transcriptions.
• Initialize a triphone system on the monophone alignments.

Add delta values.
• Initialize a further triphone model on those alignments. The

features this time were LDA+MLLT processed to reduce
noise and normalize per speaker.

• Train a final triphone system on fMLLR features, initialized
on the previous triphone features.

• These final triphone alignments were the gold labels for our
DNN system. The DNN was trained on either fMLLR trans-
formed features, or the unchanged feature vectors used on the
initial monophone system.

These methods are commonly used in DNN-HMM systems
to find the best state-frame alignments possible to be used as
the gold labels for training the DNN system. As for our DNN
system, we used 4 hidden layers of 1024 dimensions. Our input
size was 44 * 4 frames on either side of the input. Our out-
put size was 1832 states, for a total parameter size of 5.4M. We
used a minibatch size of 128 and an initial learning rate of 0.01,
final learning rate of 0.001. Decoding was done with a bigram
language model. The probabilities of this language model were
determined using all the possible sentences found in the TaL
corpus. Likewise, the lexicon consisted only of words found in
the TaL corpus. The language model was built using the SRILM
toolkit [25], and then converted into FST format using Kaldi.
The corresponding phones were determined using the BEEP1

lexicon which is a British English lexicon. We chose this lexi-
con due to the majority of speakers having a British accent va-
riety. All of our experiments were carried out on 2 NVidia Ti-
tanX GPUs with a runtime of between 12 and 18 hours for each
model and corresponding test sets.

For our initial experiment, we trained our model using the
x,y feature vectors as they were output from the DLC model.
We did not include the confidence values and we did not re-
move or change any data based on confidence. We did not do
any filtering of the articulator trajectories. This was in order to
establish a baseline for DLC features to compare further results.

For our second experiment, we removed values from our
feature vectors which were associated with a confidence value
of less than 0.1. We determined this threshold by reviewing
a small sample of videos, noting that when a body part is ob-
scured by a shadow or is not present in the field of view, the
confidence value drops below 0.1. Future experiments could
tune the amount of confidence filtering as a hyperparameter. We
then interpolated the articulator coordinate trajectories to fill in
the gaps left behind by this removal, using a bi-directional linear
method. Because of this data removal, some utterances had to
be discarded, which occurred when there was not enough data
left after confidence filtering to interpolate. Utterances removed
in one test set were removed in the other in order to make con-
sistent comparisons (Table 1).

In a third experiment, we similarly removed points which
were more than 3 standard deviations away from the mean for a
particular piece of anatomy for a particular utterance, and then
interpolated over the missing values. This was meant to remove
points which were discontinuous with the rest of the articula-

1T. Robinson. (1996) Beep dictionary. Cambridge University.
[Online]. Available: http://svr-www.eng.cam.ac.uk/comp.speech/ Sec-
tion1/Lexical/beep.htm

Figure 2: Our processing pipeline and DNN-HMM system.

Train Utts Test Utts Speakers
Plain 13274 1205 81
+ Confidence filt 12803 1181 81
+ Outlier filt 12779 1179 81
+ Low pass filt 12779 1179 81

Table 1: Test and training split counts for the four conditions.

tor behavior. We observed that generally, the points marked by
DLC for a piece of anatomy were normally distributed.

For a fourth experiment, we low-pass filtered the articulator
trajectories at a rate of 20 Hz. We chose this value because the
syllable production rate for adult speakers ranges from an av-
erage of around 3 syll/s towards a maximum possible 10 syll/s
[26] and any motion shorter than this threshold would constitute
noise introduced by the imprecision of the ultrasound image, or
the DLC point estimation. We chose 20 Hz instead of 10 Hz as
a safe buffer amount and to preserve any intra-syllabic effects
which may be significant to determining phone identity (espe-
cially in the silent mode which has a greater number of artic-
ulatory sub-movements [18]). Low-pass filtering is a common
technique in signal processing for de-noising purposes [27].

5. Results
The models are evaluated using Word Error Rate, calculated as:

WER =
I +D + S

N

where I, D, and S correspond to the number of Insertion, Dele-
tion and Substitution errors after decoding, and N is the total
number of words in the gold transcription. Kaldi tries sev-
eral different weights of the language model versus the acoustic
model at decoding time. We report on the best WER found in
each condition (Table 2).

We see a dramatic improvement in performance when filter-
ing out and interpolating over articulator coordinates assigned
low confidence compared to using DLC features unaltered. This
suggests that while using the DLC model to label points on the
articulators is a good start, filtering based on confidence val-
ues is necessary to get good performance, and that the low-
confidence coordinates are very disruptive to the model’s ability
to learn the relationship between phone identity and articulator
movement. In addition, filtering out outlier values and lowpass
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Voiced Silent
Raw fMLLR Raw fMLLR

Plain DLC 61.00 54.13 81.88 71.46
+ Confidence filt 35.72 28.17 63.64 48.53
+ Outlier filt 33.60 27.82 63.49 47.71
+ Low pass filt 33.64 26.87 62.60 47.15
Ribeiro et al. (2021) 39.34 39.79 77.79 70.21

Table 2: %WER for our experiments and previous work.

filtering the trajectories to reduce noise in the SSR system input
provides further modest improvements to model performance.
It is also noteworthy that the WER for our test sets outperforms
the previous multi-speaker model of Ribeiro et al. once low-
confidence data points are filtered out. It appears our model is
able to learn more about how articulator trajectory features re-
late to phones as opposed to something abstracted from the raw
image data. We believe the ease with which we can apply sim-
ple data conditioning techniques to the DLC-tracked features
offers a distinct advantage over other articulatory representions.

We observe that fMLLR for DLC features proved more ad-
vantageous than fMLLR on the bottleneck features used in the
previous study. We also note the fMLLR overall seems more
helpful for silent speech than voiced speech. The greatest im-
provement in any condition for voiced speech due to fMLLR is
7.55%, while for silent speech it is 15.45%. This suggests that
fMLLR is useful for domain adaptation, and is useful too for
both modalities as a method of speaker adaptation.

Overall, the silent test set suffers from a worse WER than
the voiced test set. This is expected due to domain mismatch.
Performing a method of domain adaptation does dramatically
improve WER but does not completely alleviate the problem.
If fMLLR can reduce differences in how articulators are posi-
tioned in space, but the difference in WER between modalities
is still relatively large, it suggests that there is more going on
than just differences in articulatory space used.

Since audio feedback is important to driving corrective ac-
tions, we posit a lack of audio feedback may result in missed ar-
ticulatory targets. We hypothesized that rather than effects like
differences in speaking rate and articulatory space being respon-
sible for the higher WER, perhaps speakers were not properly
meeting targets while speaking silently. This would be difficult
to ameliorate with an affine transformation method of domain
adaptation, as fMLLR could essentially push peaks in the tra-
jectory higher or lower, but it could not put them where they
don’t exist.

5.1. Analysis of silent versus normally-voiced speech

In order to compare the articulator trajectories between the two
modalities, we applied dynamic time warping (DTW) to align
the respective trajectories for the corresponding utterances of
a given speaker [28]. We tested: i) warp distance as a func-
tion of WER; and ii) the area between trajectories as a func-
tion of WER. We reasoned that silent utterance trajectories
which are already similar to the voiced counterpart utterances
in both length and “shape” would need less warping. Similarly,
a smaller area separating trajectories after DTW could represent
articulators meeting their targets in a similar way (irrespective
of differences in length or synchronicity before warping). Fig. 3
illustrates an example of this. We did this on trajectories which

Figure 3: Example of good (top) and bad (bottom) silent/voiced
trajectory correspondence. Note the increased warp and fill
area compared to the good correspondence example. Utter-
ance: ”When sunlight strikes raindrops in the air they act like
a prism and form a rainbow.”

had first been adjusted to zero mean, so that effects like change
in camera position would not be reflected in the difference in
trajectories. We also used our low-pass filtered trajectories, as
we were interested more in the overall shape of the trajectory
rather than the finer details. We tested the relationship using
linear regression, and used the difference in WER between cor-
responding utterances in the low-pass filtered condition. Warp
distance and area between trajectories were averaged out among
articulators for an utterance. We found that with α = .05, warp
distance was a function of WER (R2 = 0.060, F (1, 1179) =
74.66, p < .0001), as well as the area between trajectories
(R2 = 0.052, F (1, 1179) = 64.24, p < .0001). This suggests
that the more warping that is needed to get silent utterances to
look like their modal counterparts, and the more dissimilar the
final trajectories are, the higher WER we can expect. Since the
peaks and valleys of the trajectories in the modal condition rep-
resent articulators moving to meet articulatory targets, essen-
tially, if people speaking silently do not meet their articulatory
targets in the same way (or at all) as they do when speaking
aloud, then the WER of our model will be higher.

6. Conclusions

In this paper, we explored a multi-speaker ASR system for silent
speech recognition. We used DeepLabCut to extract articulator
coordinate features from tongue ultrasound and lip video se-
quences to feed as input to this model. We also used these fea-
tures in an analysis of the differences in silent and voiced speech
articulator trajectories. We noted that although the WER was
relatively high for silent speech due to the domain mismatch,
using fMLLR as a domain adaptation method greatly improved
model performance. Analysing system performance in terms
of differences in the overall trajectories of articulators between
modalities using DTW, we found that trajectory mismatch was
predictive of model performance. While fMLLR is a good can-
didate for a transformation based on differences in variance,
other methods of adaptation would be required to address the
more complex issues raised by our DTW analysis. Further kine-
matic analysis could be done with DLC data to deepen our un-
derstanding of the differences between silent and voiced speech.
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