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Abstract

Recent findings show that pre-trained wav2vec 2.0 models are
reliable feature extractors for various speaker characteristics
classification tasks. We show that latent representations ex-
tracted at different layers of a pre-trained wav2vec 2.0 system
can be used as features for binary classification to distinguish
between children with Cleft Lip and Palate (CLP) and a healthy
control group. The results indicate that the distinction between
CLP and healthy voices, especially with latent representations
from the lower and middle encoder layers, reaches an accu-
racy of 100%. We test the classifier to find influencing fac-
tors for classification using unseen out-of-domain healthy and
pathologic corpora with varying characteristics: age, spoken
content, and acoustic conditions. Cross-pathology and cross-
healthy tests reveal that the trained classifiers are unreliable if
there is a mismatch between training and out-of-domain test
data in, e.g., age, spoken content, or acoustic conditions.
Index Terms: pathologic speech, cleft lip and palate, children’s
speech

1. Introduction
Speech pathologies have been studied using a wide variety of
approaches. Latent features such as GMM-Supervectors [1],
i-vectors [2] and x-vectors [3] have been found useful for the
analysis of pathologies from speech samples. Bocklet et al. use
GMM-Supervectors to assess various speech pathologies [4], to
evaluate the intelligibility of laryngeal cancer patients [5] and
to rate Parkinson’s patients [6]. X-vectors [7] were used for dis-
tinction among patients with Parkinson’s disease and a healthy
control group. More recent research employed latent represen-
tations obtained from wav2vec 2.0 [8] (W2V2) models in vocal
fatigue detection, speech emotion recognition, and dysfluency
detection [9, 10, 11]. Furthermore, latent W2V2 representa-
tions have been successfully used to distinguish between speak-
ers and languages [12].

We utilize wav2vec 2.0 (W2V2) to extract latent speech
representations and explore their suitability for detecting Cleft
Lip and Palate (CLP) in children’s voices using two different
kinds of binary classifiers: large-margin classifiers and neural
networks. Finally, we perform cross-corpora tests using out-of-
domain data and investigate which utterance and speaker char-
acteristics are important for CLP detection. We alternate fea-
tures such as age, spoken content, and acoustic conditions in a
controlled manner to estimate their influence on classification
performance. We build upon the concerns raised in [13] and
analyze the claim that models often learn to distinguish record-
ing conditions and speaker demographics. To the best of our
knowledge, this is the first work to examine W2V2 embeddings
regarding various impact factors for children’s voice distinction
using cross-pathologic and cross-healthy corpora tests.

2. Data
We use a children’s Cleft Lip and Palate (CLP) pathological
speech corpus to train binary classifiers on features extracted
using a pre-trained W2V2 encoder. The training data was di-
vided into a training and test set (random 80% / 20% split).

The Erlangen-CLP corpus [14] is a speech corpus of chil-
dren with Cleft Lip and Palate (CLP) and age-matched con-
trol speakers (CLP C) recorded using the PLAKSS-II [15]
test (Psycholinguistische Analyse Kindlicher Sprechstörungen).
PLAKSS is a semi-standardized test consisting of words with
all German consonants, vowels, and consonant clusters. Speech
therapists widely use it in German-speaking countries. Details
are listed in Tables 1 and 2.

We perform cross-corpora tests using pathological datasets
and additional corpora consisting of healthy speech to analyze
how the trained CLP models perform on unseen data.

2.1. Pathological speech corpora and controls

In the following Section, the pathological speech corpora are
briefly described. Details of the corpora can be found in Tables
1 and 2.
Stegen-CI (SCI): The SCI corpus consists of audio record-
ings from children with hearing impairments and partially with
Cochlear Implants (CI).
Neumann/Fox-Boyer (NFB): The NFB clinical PhonBank cor-
pus [15] contains audio recordings of children with speech and
sound disorders gathered from PLAKSS. Recordings were per-
formed in different locations in Germany’s western and north-
ern regions.
Laryng41 (LAR): The tracheoesophageal (TE) substitute voice
is a typical treatment to restore the ability to speak after laryn-
gectomy, i.e., the removal of the entire larynx. The LAR [16]
corpus is a collection of tracheoesophageal speakers reading the
German version of the “The North Wind and the Sun” (NWS)
text passage [17]. NWS is a phonetically rich text widely used
in speech therapy.
Oral Squamous Cell Carcinoma (OSCC): OSCC and its
treatment impair speech intelligibility by alteration of the vo-
cal tract. Patients were recorded reading the NWS text passage.
Parkinson’s Disease (PD): Parkinson’s disease is a degenera-
tive disorder of the central nervous system, mainly affecting the
motor system. The full PD corpus [6] contains native German
speakers diagnosed with PD and a healthy control group. We
use one of the tasks contained: reading a phonetically rich text.
AgedVoices110 (AV): Since LAR and OSCC have no matching
controls, we use a corpus called AV consisting of elderly native
German speakers reading the NWS text passage. The AV corpus
is similar to the LAR and OSCC corpora. It includes readings
from a group of people roughly in the same age range (> 60
years), recorded at the same hospital using the same equipment
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and speaking the same dialect.

Table 1: Pathological speech corpora details.

Corpus Age Speaker Hours Content

CLP 8.7± 13.3 332 28.9 PLAKSS

SCI 13.4± 6.4 193 9.2 PLAKSS
NFB 5.2± 4.4 29 0.7 PLAKSS
LAR 62.0± 7.7 41 0.7 NWS text

OSCC 59.9± 10.1 71 1.0 NWS text
PD 66.6± 9.0 88 1.2 Text

Table 2: Control and healthy speech corpora details.
Sentences1 and Sentences2 differ in content.

Corpus Age Speaker Hours Content

CLP C 8.7± 13.3 598 39.5 PLAKSS
AV 75.7± 9.6 110 1.7 NWS text

PD C 58.1± 14.2 88 1.2 Text

RH 11.6± 7.2 177 1.9 RHINO
FB 5.1± 4.1 32 0.7 PLAKSS

PSZ 16.0± 4.0 10 1.0 Sentences1

TUDA - 10 1.0 Sentences2

NWSR 66.6± 9.0 8 0.6 NWS text
MCK 4.5± 1.5 2 0.1 NWS &

PLAKSS

2.2. Additional healthy corpora

The following Section lists the additional healthy corpora used
for cross-tests. Details can be found in Table 2.
RHINO (RH): The dataset consists of children who spoke the
RHINO (Heidelberger Rhinophoniebogen) test, which was de-
veloped to assess nasality. The dataset consists of the identi-
cal children of the Erlangen-CLP control group and additional
speakers. The utterances contain sustained vowels, consonants,
and sentences with and without nasal consonants.
Fox-Boyer (FB): The FB corpus [15] contains audio record-
ings of typically developing children gathered from PLAKSS.
Recordings were performed in different kindergartens in the
northeast region of Germany or private practices in the western
and northern regions of Germany.
Phattsessionz100 (PSZ): The PhattSessionz project [18] is
a regionally balanced speech database of German adolescent
speakers. We randomly selected 10 speakers from the “read-
ing phonetically rich sentences” task for our experiments.
Tuda-De100 (TUDA): The TUDA data comprises 100 utter-
ances from the Tuda distant speech corpus [19], aged 21 to 30.
We randomly selected a subset of utterances from 10 speak-
ers (5 female, 5 male) recorded using a Yamaha PSG-01S
microphone. Each speaker reads 10 sentences from German
Wikipedia.
NWS Reading (NWSR): NWSR is a small corpus comprising
8 native German speakers reading the NWS text passage multi-
ple times throughout approximately one year. Six speakers were
older than 50, and two were 12 and 23.
Multi-content Kids (MCK): MCK consists of two children
reading the NWS text passage and performing the PLAKSS test.

3. Method
3.1. Latent features
We use a pre-trained (LibriSpeech) W2V2 base model fine-
tuned for ASR to extract embeddings for each utterance of the

individual datasets from each of the 12 transformer blocks over
the entire utterance length. The dimensionality of the result-
ing features is 768. The receptive field is 25ms with a stride of
20ms.

We first analyzed the W2V2 embeddings of the CLP dataset
at different levels: aggregated by utterance, speaker, and layer
using the mean. Based on available metadata, we further inves-
tigated whether grouping by in-common properties of the em-
beddings occurs by visualizing embeddings using t-SNE plots.
Examined metadata age, gender, recording location, accent, and
spoken text. Furthermore, based on previous works [9, 20, 21],
we assume that the lower encoder blocks contain low-level fea-
tures; the higher the layer, the more content and phonetic infor-
mation these contain. For this reason, we aggregate three layers
at a time, calculating the average over the lower layers (1-3),
middle layers (4-6 and 7-9), and higher layers (10-12).

Figure 1 shows the embeddings at utterance level in a) and
b) and at speaker level in c) and d). Further, a) and c) were
extracted from lower layers 1-3 and b) and d) from the mid-
dle layers 7-9.1 Utterance embeddings from lower layers in a)
show coarse clusters by acoustic conditions (noisy environment,
above-average age) and continuous mapping of age structures.
Color mappings correspond to age groups per year. Utterance
embeddings from middle layers in b) show for the most part
distinct clusters by the spoken content, where each color repre-
sents the same three spoken words of the PLAKSS test. A sin-
gle turn in the PLAKSS test of the CLP corpus corresponds to
three spoken words. Thus, for example, a turn contains the Ger-
man words: Mond, Eimer, Baum. These findings are consistent
with previous works, that more content information is found in
the higher layers. Utterance embeddings averaged to speaker
embeddings in c) and d) show similar main groups as in a) by
acoustic conditions and age structures, even in higher layer em-
beddings. For further analysis, we aggregated the datasets by
the speaker using the mean of all utterance embeddings of a
speaker to obtain more robust features.

a) b)

c) d)

2 age

noisy

25 1 turn 33

Figure 1: t-SNE projection (perplexity = 30) of CLP features
extracted and aggregated at layers 1-3 (a, c) and 7-9 (b, d) and
utterance level (a, b) vs. speaker level (c, d). The top-left and
bottom plots show the age distribution, and the top-right plot
shows the PLAKSS test turn clusters.

3.2. Classifier

We evaluate two different kinds of models; large-margin classi-
fiers and neural networks. We choose Support Vector Machine
(SVMs) and a feedforward neural network with fully connected

1All plots can be explored at: https://clpclf.github.io/clp-clf
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layers (FFN) for the binary classification. The optimal hyper-
parameters for each estimator are determined in a 5-fold cross-
validation on the training set using the grid search method.

SVMs are trained using radial basis function (RBF) ker-
nels. The kernel parameter γ is selected from γ ∈ {10−k | k =
5, . . . , 1} ⊂ R>0, and the penalty parameter of the error term
C is selected from C ∈ {5, 10, 20, 50} ⊂ N>0.

The FFN employs the Adam [22] optimizer with exponen-
tial decay rates of β1 = 0.9, β2 = 0.999 and a L2 regular-
ization term of 10−4. The FFN learning rate α is chosen from
α ∈ {10−k | k = 1, . . . , 4} ⊂ R>0. The activation function is
either Tanh or ReLU, the number of hidden layers is 2 or 3, and
the number of hidden units varies between 32 and 128.

3.3. Decision boundary plot

We use a modified version of high-dimensional decision bound-
ary plot2 to analyze the classifier results and plot an approxi-
mate projection of the classifier decision boundaries. For this
purpose, samples from both classes are used to find the re-
gions with the maximum uncertainty (probability=0.5) and lo-
cate keypoints, along connecting lines between the embeddings.
Subsequently, along lines connecting the keypoints, maximum
uncertainty regions are located; for the case of concave regions,
uncertainty regions are located along hypersphere surfaces. Fi-
nally, the points are projected into two-dimensional space using
t-SNE.

4. Experiments
4.1. CLP voice classification

We first train binary classifiers (SVM and FFN) to distinguish
between CLP and matched control group. Inputs of the classi-
fiers are the 12 W2V2 transformer block outputs extracted from
audio and aggregated as described in 3.1.

Table 3 shows lower-layer, middle-layer, and high-layer re-
sults of the SVC and FFN classifier. The results indicate that
the lower-layer and middle-layer embeddings are best suited for
classifying the pathologic voices, resulting in accuracy scores
from 94.6% to 100%. The scores are statistically significant at
a significance level of α = 0.05. The CLP classifiers yield
similar results on lower-layer and middle-layer features, result-
ing in an approximate 5% relative accuracy drop on high-layer
features. The results indicate that important pathological voice
information can be represented by W2V2 embeddings, espe-
cially in the lower and middle layers. This is, for example,
consistent with the results from [12], where the authors found
that the lower-layer representations are best suited for speaker-
and language-based distinction tasks. Since the classifiers yield
similar results, we will only consider the SVM results without
having to average across classifier kinds.

Table 3: Classification accuracy results of the binary classifier
for CLP, trained on features from lower-, middle-, and high-
layers.

Classifier 1-3 4-6 7-9 10-12

SVC 100 100 99.5 97.3
FFN 100 99.5 99.5 94.6

4.2. Cross-pathology tests

Since the binary classifiers yield near-perfect results on the CLP
pathologic voice classification task, we investigate what was

2https://github.com/tmadl/highdimensional-decision-boundary-plot

learned and how models trained on one pathology perform on
out-of-domain pathological and healthy data. We use the pre-
viously trained classifiers of the CLP pathology and test each
of the five pathological datasets (SCI, NFB, LAR, OSCC, and
PD) to see how these handle unseen pathologic speech that is
not CLP. The evaluations are listed in Table 4. We report the
results in percent classified as CLP pathologic voice.

CLP models classify the four pathologic corpora NFB,
LAR, OSCC, and PD as CLP with an accuracy of 100% trained
on the lower-layer embeddings. Middle-layer embeddings (4-
6) result in uncertainty for LAR (56.8%) and NFB (65.5%),
whereas OSCC and PD are classified as 71.2% and 85.2% as
CLP. SCI speakers are predicted as CLP on high-layer features
while on all other embeddings as healthy speakers. Classifiers
trained on high-layer embeddings predict all pathologic corpora
as CLP.

It is unclear why the CLP models classify all other patholo-
gies except CI as CLP on lower-layer and middle-layer features.
This could be due to the significant age difference or acoustic
differences between the corpora, which leads to the classifica-
tion of unseen data into the CLP class, especially on lower-layer
features. Moreover, the spoken content also differs between the
corpora, which would explain the variability in high-layer fea-
tures. Whereas in CLP, single words are uttered, in LAR and
OSCC, the NWS text is read, and in PD, a completely different
text is read.

Table 4: Cross-corpora SVM classification results for patholog-
ical data.

Corpus 1-3 4-6 7-9 10-12

NFB 100 65.5 34.5 100
SCI 0 7.9 1.7 100

LAR 100 56.8 0 100
OSCC 100 71.2 34.6 100

PD 100 85.2 34.1 100

4.3. Cross-healthy tests

Similar to cross-pathology tests, we conduct tests on unseen
out-of-domain data. Additional to the training controls data, we
evaluate the CLP pathology classifiers on the corpora described
in Section 2.2. The results are listed in Table 5. As in Section
4.2, we report the results as the percentage classified as CLP.

No consistent result emerges by looking at the predictions
of the CLP classifiers, except for high-layer features where all
corpora are entirely classified as CLP. The results of the classi-
fiers trained on low- and middle-layer features do not indicate
bias according to age structure. Young children in FB: 100%
CLP; in contrast, the elderly speakers in AV: 20-28.3% CLP. A
similar result is obtained for spoken content. For example, the
lower-layer feature classifier yields a large discrepancy for PD
(phonetically rich text, 100% as CLP) and NWSR (NWS text,
18.8% as CLP). It is also remarkable that despite the same spo-
ken content (PLAKSS) and a shared age range with the training
data, the entire FB corpus is classified as CLP regardless of the
used training features layers of the classifier.

4.4. Analysis

To better understand how classification results are produced on
out-of-domain data, we examine the most prominent differences
between the corpora: acoustic conditions, age structure, and
spoken content.
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Table 5: Cross-healthy SVM classification accuracy results for
controls and out-of-domain healthy data.

Corpus 1-3 4-6 7-9 10-12

PD 100 69.3 18.2 100
AV 28.2 20.0 1.8 100

NWSR 18.8 38.5 23.9 100
TUDA 100 92.2 23.5 100

PSZ 30.0 40.0 30.0 100
FB 100 100 100 100

MCK 100 0 0 100
RH 5.6 88.7 65.5 100

4.4.1. Acoustic conditions

Considering only CLP C from Figure 2, three clusters are ev-
ident. The small bottom cluster refers to older children (µ =
12.1 ± 4.7 years old, overall corpus µ = 7.8) and is recorded
in a different room. While the right top small cluster consists
of speaker recordings with noticeable noise in the background
(SNR = 7) compared to the remaining dataset recordings (SNR
= 22). Especially embeddings from the lower layers show
the influence of the acoustic conditions. The FB corpus was
recorded using an Olympus WS-650S digital audio recorder or
a later version, probably placed on the table in front of the chil-
dren. In contrast, the whole CLP and RH corpora were recorded
using a standard headset microphone (Plantronics Audio .655).

4.4.2. Spoken content

The spoken content across the corpora is divided into PLAKSS
words (CLP, SCI, FB), read sentences (TUDA, PSZ), read pho-
netically rich text (PD), NWS text (NWSR, MCK, AV, LAR,
OSCC) and single vowels and consonants combined with read
sentences (RH). Figure 2 shows all corpora used with the ex-
tracted lower-layer (1-3) average embeddings. The lower area
of the Figure shows all PLAKSS corpora, including CLP, SCI,
FB, and additionally RH. At the top area, a group of corpora
OSCC, AV with the read NWS passage, and PD with the read
text is formed (>50 years). These clusters could also arise from
age differences, but tests with MCK show that for lower-layer
embeddings, both children are assigned to the child embeddings
of the other corpora (lower area), regardless of the spoken con-
tent. Regarding middle-layer embeddings, both children are lo-
cated at the NWS corpora (OSCC, LAR) using NWS embed-
dings and remain at the bottom area using PLAKSS features.
Our analysis of all aggregated layers shows that spoken content
is encoded in the latent features, especially in middle-layers.

4.4.3. Age structures

The age structures vary substantially across the used datasets.
The youngest children are included in FB and MCK, CLP, CI,
and PSZ for the children/adolescent corpora. TUDA follows
with 21 to 30 years old speakers. The oldest speakers are in-
cluded in NWSR, LAR, OSCC, and AV, with >50 years old.
Acoustic near representations are recognizable especially based
on the lower-layer features. Children of any spoken content are
grouped. This observation shifts in the middle- and high-layer
features, where the spoken content seems to have a stronger ef-
fect.

4.4.4. Decision boundary

To gain additional insights into how the results from Tables 4
and 5 emerge, we attempt to visualize the decision boundary
according to the procedure described in Section 3.3. Figure 2
shows an approximation of the SVM decision boundary as a

contour plot in the background; blue represents the CLP class,
and white is the healthy control group. We further extract the
support vectors from the SVM classifiers. Embeddings, deci-
sion boundary points, and support vectors were simultaneously
projected into a 2-dimensional space for visualization. Figure 2
shows the support vectors of the pathological class with an ”+”
marker and the healthy class with an ”x” marker.

The decision boundary, especially in combination with the
support vectors, suggests that there is not always a clear bound-
ary to features not seen in the training. Corpora with unseen
age structures, spoken content, and acoustic features are classi-
fied ambiguously. Therefore, it is important to include as many
of the aforementioned stimuli and conditions as possible in the
training data to cover as many uncertainties as possible and to
create robust classifiers that generalize to out-of-domain data.

CLP_C
CLP
> 50 years
MCK_NWS
MCK_PLAKSS
SCI
FB
NFB
PSZ
TUDA
RH
SV_P
SV_C

Figure 2: 2-dimensional t-SNE projection (perplexity = 90)
of the mean latent features extracted at W2V2 lower-layers (1-
3) encoder for control datasets. ( C = controls, P = patho-
logic). The background approximates the SVM decision bound-
ary; blue represents the CLP class, white the healthy control.

5. Conclusions
We have shown that latent representations extracted using a pre-
trained W2V2 model include characteristics necessary for chil-
dren’s speech distinction with cleft lip and palate. Especially the
features extracted from the low and middle layers exhibit the
strongest distinction required for CLP speech detection. The
best classifier accuracy trained on low-layer and middle-layer
features is 100%. However, based on the cross-corpora tests,
selecting diverse speech stimuli and conditions is important for
robust classification, especially in binary classification. The in-
fluence also differs depending on the extracted layer of the em-
beddings. The trained pathology classifiers provide ambiguous
results on out-of-domain data because only one spoken content
(PLAKSS), the same recording equipment, and only children
were part of the training data. Our findings support the con-
cerns raised in [13]. However, our multi-class extension [23]
of this work shows that classifiers trained on different patholo-
gies and characteristics in a multi-class scenario provide robust
results and have a regularizing effect.
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