
Text-only domain adaptation for end-to-end ASR using integrated
text-to-mel-spectrogram generator

Vladimir Bataev1,2, Roman Korostik1,3, Evgeny Shabalin1,4, Vitaly Lavrukhin1, Boris Ginsburg1

1NVIDIA
2University of London, UK; 3ITMO University, Russia; 4Higher School of Economics, Russia

{vbataev, rkorostik, eshabalin, vlavrukhin, bginsburg}@nvidia.com

Abstract
We propose an end-to-end Automatic Speech Recognition
(ASR) system that can be trained on transcribed speech data,
text-only data, or a mixture of both. The proposed model
uses an integrated auxiliary block for text-based training. This
block combines a non-autoregressive multi-speaker text-to-mel-
spectrogram generator with a GAN-based enhancer to improve
the spectrogram quality. The proposed system can generate a
mel-spectrogram dynamically during training. It can be used
to adapt the ASR model to a new domain by using text-only
data from this domain. We demonstrate that the proposed train-
ing method significantly improves ASR accuracy compared to
the system trained on transcribed speech only. It also surpasses
cascade TTS systems with the vocoder in the adaptation quality
and training speed.

1. Introduction
Modern end-to-end automatic speech recognition (ASR) sys-
tems are superior to traditional HMM-DNN systems in both
academic benchmarks and commercial applications [1]. But
customizing such models, especially adapting to a new domain,
is still challenging. The standard approach of using audio-text
pairs from a new domain has a high cost of collecting and
transcribing speech. In many scenarios, text-only adaptation
is preferable due to the wide availability of text data. In tradi-
tional HMM-DNN systems, a WFST recognition graph is built
using a statistical language model (LM), which can be easily
constructed from the new text-only data and can significantly
improve the performance on a new domain. End-to-end ASR
systems can also benefit from an external language model [2],
but this approach requires significantly more computational re-
sources than greedy decoding.

To use text data for training or finetuning, audio can be
synthesized from the text to use in a conventional training or
finetuning pipeline [3, 4, 5, 6, 7] or the unpaired text input
itself can be integrated into an end-to-end ASR neural sys-
tem [8, 9, 10, 11, 12]. Furthermore, some works propose mod-
ifying end-to-end model architectures to make the decoder be-
have like an actual language model for encoder-decoder with
attention [13] and RNN-Transducer [14] models, and by such
behavior enable text-only adaptation for the decoder part. These
approaches require changing the training pipeline significantly,
in most cases making it incompatible with existing models. Us-
ing a pretrained text-to-speech (TTS) system to synthesize au-
dio for audio-text pairs is simpler and does not require modifi-
cation of existing models.

The main disadvantages of TTS-based ASR customization
are a requirement for large storage for generated data, the high
computational cost of generating speech, and a mismatch be-

tween natural and synthetic audio. By generating speech on
the fly using a multi-speaker TTS system, it is possible to pro-
duce a practically infinite amount of data without limitations
of required space. Each text can be generated with different
speakers, and the number of speakers can also be unlimited by
sampling from speaker embedding space [15]. Conversely, dy-
namic audio generation using the complete TTS system will
significantly slow down the training process and impact used
memory.

Modern TTS pipelines are usually composed of a mel spec-
trogram generator followed by a vocoder to transform the spec-
trogram into a speech signal, and the vocoder is usually the
most computationally intensive part of the TTS pipeline. Since
ASR models can also use mel spectrogram features as input,
the vocoder part can be omitted. On the other side, training
on spectrograms computed from vocoder output leads to higher
ASR performance [4, 16].

Some solutions are proposed to solve the mismatch prob-
lem, e.g., training ASR and TTS models with shared compo-
nents [17] or with consistency loss [18, 19, 20, 21], using dis-
crete representations instead of mel spectrogram [22] or train-
ing an additional input block for the combination of ASR and
TTS system to improve performance with a frozen ASR back-
bone [23]. Most of these methods make ASR and TTS models
dependent on each other, and we are trying to avoid this. The
rejection sampling algorithm can be used to improve distribu-
tion mismatch [24], but this exacerbates the problem of com-
puting resources. Also, recently an approach of using an ad-
ditional block for text-to-mel-spectrogram generator was pre-
sented in [16] with 5-10% relative WER improvements.

In our work, we are building a lightweight modular text-
only adaptation system based on a text-to-mel-spectrogram gen-
erator1. We augment an end-to-end ASR model with an ad-
ditional module for the on-the-fly generation of spectrograms
from the text during training. We use FastPitch [25] modified
to produce synthetic mel spectrograms with the same STFT pa-
rameters that are used in the ASR front-end. This approach does
not significantly affect the training speed and is fully compati-
ble with existing pretrained models. We address the problem
of the mismatch between generated and real spectrograms by
applying a small GAN-based enhancer directly to the generated
spectrograms. Our main contributions are:
• We extend the text-to-spectrogram (TTS) module with an ad-

ditional block based on StyleGAN 2 to mitigate the mismatch
between real and synthetic spectrograms.

• We show that fine-tuning the ASR model on combined
1We limit the investigated task to adaptation to a new text domain. We are

building a modular system, therefore training ASR and TTS models together is
undesirable. We also assume that the model will be applied in the target domain
and do not mitigate performance drop on the source domain.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

2928 10.21437/Interspeech.2023-906



end-to-end ASR
model (Trainable)

Mel Spectrogram
Extractor

TTS Mel Spectrogram
Generator (Frozen)

Output: Text

Input: Raw Audio Input: Text

TTS Part
Conventional
End-to-End
ASR Model

Enhancer (Frozen)

Figure 1: ASR system with text-to-mel-spectrogram frontend

speech-text and text-only datasets using the proposed sys-
tem leads to a significant accuracy improvement. We also
demonstrate that one can improve the acoustic end-to-end
ASR model by utilizing textual data, usually used for training
a language model in hybrid HMM-DNN models.

Models and code are released in the NeMo [26] framework.

2. ASR Model with integrated
text-to-spectrogram front-end

To enable text-only adaptation, we add a text-to-spectrogram
front-end to the ASR model as shown in Fig. 1. The model can
take text or audio as input during training. If the input is audio,
the mel spectrogram is extracted and passed directly to the ASR
network. If the input is text, the mel spectrogram is produced on
the fly using the pretrained frozen mel spectrogram generator
and then fed into the ASR model, as in the previous case. At
inference time, only the standard speech front-end is used.

2.1. Text-to-spectrogram frontend

We use multi-speaker FastPitch [25] as our base text-to-
spectrogram model. Neural TTS models produce blurry spec-
trograms, so we add an Enhancer block to add fine details to
synthesized spectrograms. Our Enhancer is based on the Style-
GAN 2 [27] architecture2.

We modify the original StyleGAN 2 to operate on 80-band
mel spectrograms of arbitrary length L, which are treated as
grayscale images. The network starts from a 5∗L/16 fixed ran-
dom image and outputs an 80∗L detailed spectrogram. We add
an appropriately downscaled and broadcasted spectrogram to
the input and output of each generator block. This way, the gen-
erative process for the residual becomes spatially conditioned
on the input spectrogram, and the network learns only to gener-
ate the details. Within the discriminator, we average across the
time axis before projecting to logits.

The Enhancer is trained adversarially. We generate blurry
spectrograms by passing TTS training data through the corre-
sponding FastPitch model using ground-truth F0 and speaker
IDs. Blurry spectrograms passed through the generator are

2As a starting point, we used StyleGAN 2 implementation from
https://github.com/lucidrains/stylegan2-pytorch

real mel-spectrogram 
(real sample)

FastPitch utterance 
from dataset

mel-spectrogram

Generator (Enhancer)

enhanced mel-spectrogram 
(fake sample)

Discriminator

real/fake score

Figure 2: Spectrogram Enhancer adversarial training setup

considered “fake” and real spectrograms are considered “real”
(Fig. 2). The training procedure is the usual alternation between
gradient steps for the discriminator and the generator. Both are
trained using hinge loss [28]. The gradient penalty loss [29, 27]
is used every 4 steps for the discriminator.

Ablation runs showed that the enhancer is prone to gener-
ating artifacts. To fix this, we add a consistency loss during
generator training: L1 distance between real and fake spectro-
grams, both downsampled 4x along the frequency axis.

2.2. ASR backbone

In the proposed pipeline, any end-to-end model can be used
as an ASR backbone, which takes in a spectrogram and pro-
duces the corresponding transcription. For experiments we use
Conformer-L [30] (120M), and Conformer-M (32M parame-
ters) Transducers 3 implemented with NeMo [26]. The encoder
is a convolution-augmented transformer network; the decoder
is a single-layer LSTM network with 640 hidden units. The en-
coder contains either BatchNorm (BN) [31] layers following the
original architecture, or LayerNorm (LN) [32]. Since BN lay-
ers in inference mode use statistics accumulated at training time,
due to the mismatch between synthetic and real audio additional
issues are introduced when using synthetic audio for finetuning.
To avoid this, we find it useful either to use models with Layer-
Norm, which normalizes the input samples independently and
doesn’t have a mismatch between inference and training, or to
fuse the BatchNorm layer (Fused BN) into a trainable projec-
tion. This is equivalent to removing BN (it can be further fused
with a convolutional layer), but it allows us to use pretrained
BN-based models for adaptation. Separating statistics in BN
for real and synthetic data was proposed in [24], but this ap-
proach can be applied only when the real data is present. We
believe that fusing BN is a more universal alternative for fine-
tuning since we did not observe any meaningful quality degra-
dation between pure and fused BN even for real audio.

3https://github.com/NVIDIA/NeMo/blob/main/examples/
asr/conf/conformer/conformer_transducer_bpe.yaml

2929



Table 1: Training overhead for Conformer-M on text vs real
audio. Relative average time per training batch, measured on
synthetic LibriSpeech data, NVIDIA V100 GPU.

Model Input Relative Training Time

Conformer-M Audio 1x
+ FastPitch Text 1.03x
+ FastPitch + Enhancer Text 1.10x
+ FastPitch + Vocoder Text 1.35x

3. Experiments
3.1. Experimental setup

Conformer was trained and finetuned with the AdamW [33] op-
timizer with a weight decay of 10−3. In training from scratch,
we use the Noam annealing learning rate (LR) scheduler [34]
and global batch size of 2048 and train the model for 600
epochs (1920 GPU hours). For finetuning, we use the Cosine
Annealing [35] LR scheduler with a warmup of 20% of train-
ing steps, and maximum LR of 10−4. We finetune Conformer-
Medium for 10K (290 GPU hours without enhancer) and Large
for 15K steps (420 GPU hours) on SLURP [36] data with global
batch size of 512. For finetuning with WSJ [37] data we use
batch size of 256, and finetune for 20K steps on usual train-
ing data (160 GPU hours), and for 40K when mixing texts and
audio-text pairs. In all scenarios SpecAugment [38] is applied
for both real and synthetic data. All experiments are done on
the cluster of NVIDIA DGX Stations. Conformer models are
trained on 4 nodes, each containing 16 V100 GPUs.

For setup with Enhancer, we train FastPitch using NeMo
toolkit [26] with configuration fastpitch align v1.05
(50.7 M parameters). The Enhancer has a latent dimension of
192, depth of the style network is 4, “network capacity” is 16,
and the upper bound on the number of feature maps in convo-
lutional layers is 192. The generator has 3.5M parameters, and
the discriminator has 4.5M parameters. We trained model on
8 V100 GPUs for 20 epochs using Adam [39] optimizer with
β1 = 0.5, β2 = 0.9 and LR of 2 · 10−4. Batch size is 128,
and the consistency loss has a weight of 0.1. We use greedy de-
coding for WER evaluation. All experiments done on LibriTTS
train-clean-100 (53 hours) and train-960 (585 hours) subsets.
After filtering out utterances longer than 15s, we are left with
45 hours and 468 hours respectively. Spectrogram parameters
follow ASR: 25ms window, and 10ms hop, with mel bands end-
ing at 8 kHz.

For the text-to-waveform TTS setup we use FastPitch with
UnivNet [40] vocoder trained on LibriTTS clean-100 subset.
Intermediate acoustic features are 80-band mel-spectrograms,
calculated using 1024-sample windows with 256-sample hop
calculated from a 22.05 kHz signal. Mel bands end at 8 kHz.
Effectively this means ∼46ms window size with ∼12ms hop.

The Enhancer-based TTS frontend is much faster than the
Conformer models. During training, we observe an overhead
of ≤ 10% for Conformer-M (Table 1). The benchmarking was
done on V100 GPU with batch size of 16.

3.2. Training ASR model using synthetic only data

We start our experiments with a synthetic but representative
setup, to demonstrate the problem of mismatch between real
and synthetic data for training ASR models. In such a setup,
a model trained only on real audio typically fails to general-
ize, requiring a mixture of real and synthetic audio to achieve

Table 2: Text-only training on LibriSpeech texts. Model:
Conformer-M with LN. Greedy WER[%].

Training setup dev test
clean other clean other

TTS 45h 27.0 59.2 27.6 61.8
+ vocoder 16.3 44.5 17.3 46.2
+ enhancer 11.6 38.9 12.6 40.8

TTS 468h 16.5 43.2 17.1 45.5
+ enhancer 8.9 22.3 9.3 22.1

Oracle (real audio-text) 2.7 6.6 2.9 6.6

Table 3: Finetuning model with LayerNorm on SLURP text-
only data. Base model: Conformer-M with LN, trained on Lib-
riSpeech. Greedy WER[%].

Model dev test

base: Conformer-M with LN 48.9 49.3

+ SLURP texts → TTS 45h 37.5 38.1
+ vocoder 36.9 37.9
+ enhancer 36.1 36.8

+ SLURP texts → TTS 468h 33.9 34.7
+ enhancer 31.3 32.4

good performance [3]. We pretrain the FastPitch using sub-
sets of LibriTTS [41], which consists of the same speakers and
mostly the same data as LibriSpeech. We then only use text
from the LibriSpeech [42] audio-text paired dataset to generate
spectrograms with random speakers, to train a Conformer-M
model with LayerNorm. We can see that using more data for
TTS model leads to a significantly lower WER on both ”clean”
and ”other” parts of the dataset (see Table 2), but the difference
compared to real audio (6.3% vs 45.5% WER on test-other) is
still considerable. Using the enhancer model to generate more
realistic spectrogram allows to achieve significantly better re-
sults (22.1% WER on test-other), and also surpasses cascade
TTS system with vocoder.

3.3. Text-only finetuning on SLURP dataset

We use the SLURP [36] dataset to study text-only adaptation
using the proposed approach. SLURP is a spoken language un-
derstanding dataset, which contains diverse verbose commands
for smart home control. Since its text significantly differs from
audio books and conventional dialog data, it is suitable for in-
vestigating text-only adaptation.

Base models are trained on LibriSpeech data, and we use
text-only data from SLURP training set (∼11K utterances) to
adapt the model. We report WER for the original dev and test
subsets containing each ∼10h of text-audio pairs. Similar to
the previous setup, ablation studies in Table 3 with finetun-
ing Conformer-M with LN show improvement from using more
data for mel spectrogram generator (train-clean-100 vs full Lib-
riTTS), and improvement from the enhancer.

Finetuning models with BN is more challenging. As de-
scribed in Section 2.2, we replace BN with a trainable projec-
tion initialized from the original layer parameters. Experiments
in Table 4 show that finetuning Conformer-M with fused BN on
text-only data leads to larger WER improvements. The relative
impact of the enhancer is larger on models with pure BN, but

2930



Table 4: Finetuning models with BatchNorm on SLURP text-
only data. Base model: Conformer-M with BN, trained on Lib-
riSpeech. Greedy WER[%].

Model dev test

base: Conformer-M with BN 49.6 49.8

+ SLURP texts 36.6 37.5
+ fused BN 34.2 35.1
+ enhancer 33.1 33.9
+ enhancer + fused BN 31.9 32.5

Table 5: Finetuning medium and large models on SLURP
text-only data. Base models: Conformer-M and Conformer-L
with fused BN, trained on LibriSpeech. Greedy WER[%].

Model dev test
base: Conformer-M 49.6 49.8

+ SLURP texts + enhancer 31.9 32.5

base: Conformer-L 46.7 47.1
+ SLURP texts + enhancer 27.0 27.7

the system with fused BN has better performance and is com-
parable with LN-based models.

Table 5 shows that larger ASR model size leads to better
relative improvement, and the system trained on LibriSpeech
with the baseline WER of 47.1% is able to achieve 27.7% WER
on SLURP test (41.2% relative improvement).

Text-only adaptation helps even when the ASR model has
been trained on a large amount of speech data. For this sce-
nario we finetuned Conformer-L pretrained on a large corpus
of 24K hours of read and conversational speech data (not in-
cluding SLURP) starting from a publicly available checkpoint4.
With text-only finetuning the system is able to achieve 15.0%
WER (36.2% relative improvement), see Table 6.

3.4. Finetuning on WSJ dataset

To compare the contributions of using original audio-text pairs
and synthetic data whilst using a large text corpus for improving
the model, we use the WSJ [37] corpus. The audio conditions
are similar to LibriSpeech, however the domain of text is differ-
ent. To compare the text-only adaptation with text-audio pairs
we use text-only training data. The results are in Table 7. Our
system achieves 47% relative improvement on eval-92 using
only texts, and surpasses text-only adaptation of MHAT [14],
which achieves 24% WERR (from 9.5% to 7.2%) in the same
scenario. The quality of text-only adaptation is still below than
the quality of training on real data, but the difference is small.
Also, we observe that the proposed method can not only re-

Table 6: Finetuning model pretrained on large ASR corpus on
SLURP text-only data. Base: Conformer-L with BN, trained on
a large (24K hours) audio-text dataset. Greedy WER[%]

Model dev test

base: Conformer-L 23.2 23.5

+ SLURP texts + enhancer 16.1 16.7
+ fused BN 14.7 15.0

4https://catalog.ngc.nvidia.com/orgs/nvidia/teams/
nemo/models/stt_en_conformer_transducer_large

Table 7: Finetuning on WSJ: audio-text pairs vs text-only
data. Base model: Conformer-L with fused BN trained on Lib-
riSpeech. Greedy WER[%]

Model dev-93 eval-92

base: Conformer-L 9.3 7.2

texts 5.5 3.8
audio-text pairs 4.2 3.1

Table 8: Finetuning using WSJ audio-text pairs and text from
WSJ Language Model corpus. Base model: Conformer-L with
fused BN trained on LibriSpeech. Greedy WER[%].

audio:text ratio dev-93 eval-92

base: Conformer-L 9.3 7.2

1:1 2.7 1.7
1:2 2.5 1.5

place adaptation on real data with using text-only samples, but
it can gain benefits by combining them both. WSJ contains
also a large LM corpus, used in traditional HMM-DNN systems
to build a speech recognition graph based on a statistical LM.
When using synthetic mel spectrogram from this text, we ob-
serve significant improvement compared to using speech-only
data, achieving 1.5% WER on eval-92 (Table 8). Each training
epoch combines speech data and sampled texts from the LM
corpus with the shown ratio.

4. Conclusions
In this paper, we presented an end-to-end ASR model
which can be trained both on text-audio pairs and text-
only data. We enable text-only training using an integrated
neural text-to-spectrogram module, composed of a modified
non-autoregressive text-to-mel-spectrogram generator with a
lightweight GAN-based spectrogram enhancer. Such a model
does not require external storage for generated audio and also
outperforms the TTS system with a vocoder in both speed
and quality. The amount of generated synthetic data can be
theoretically infinite when using a multi-speaker text-to-mel-
spectrogram model. The Enhancer helps to mitigate the mis-
match between real and synthetic mel spectrograms. This leads
to significant improvement of ASR accuracy in text-only adap-
tation.

By using text-only LibriSpeech data to train ASR model
from scratch, we show the effectiveness of the proposed ap-
proach. We also show up to the 41.2% relative improvement on
SLURP data in the text-only scenario. On the WSJ dataset, we
demonstrate the effectiveness of our proposed system by com-
bining a large text corpus with text-audio pairs and achieving
1.5% WER on the test set.

We used Conformer as ASR backbone and FastPitch as
text-to-mel-spectrogram generator. Since the proposed archi-
tecture is modular, the approach should generalize to other ASR
and TTS models.

5. Acknowledgments
We thank our colleagues Aleksandr Laptev, Sean Narenthiran,
Jocelyn Huang, and Elena Rastorgueva for the help with the
code and paper review.

2931



6. References
[1] J. Li, “Recent advances in end-to-end automatic speech recogni-

tion,” APSIPA Transactions on Signal and Information Process-
ing, 2022.

[2] A. Laptev, S. Majumdar, and B. Ginsburg, “CTC variations
through new WFST topologies,” in Interspeech, 2022.

[3] J. Li, R. Gadde, B. Ginsburg, and V. Lavrukhin, “Training neural
speech recognition systems with synthetic speech augmentation,”
arXiv:1811.00707, 2018.

[4] A. Laptev, R. Korostik, A. Svischev, A. Andrusenko, I. Meden-
nikov, and S. Rybin, “You do not need more data: Improving end-
to-end speech recognition by text-to-speech data augmentation,”
in CISP-BMEI, 2020.

[5] J. Li, R. Zhao, Z. Meng, Y. Liu, W. Wei, S. Parthasarathy,
V. Mazalov, Z. Wang, L. He, S. Zhao, and Y. Gong, “Develop-
ing RNN-T Models Surpassing High-Performance Hybrid Mod-
els with Customization Capability,” in Interspeech, 2020.

[6] X. Zheng, Y. Liu, D. Gunceler, and D. Willett, “Using synthetic
audio to improve the recognition of out-of-vocabulary words in
end-to-end ASR systems,” ICASSP, 2020.

[7] N. Robinson, P. Ogayo, S. Gangu, D. R. Mortensen, and S. Watan-
abe, “When is TTS augmentation through a pivot language use-
ful?” in Interspeech, 2022.

[8] T. N. Sainath, R. Pang, R. Weiss, Y. He, C.-C. Chiu, and
T. Strohman, “An attention-based joint acoustic and text on-device
end-to-end model,” ICASSP, 2020.

[9] S. Thomas, B. Kingsbury, G. Saon, and H.-K. J. Kuo, “Integrat-
ing text inputs for training and adapting RNN Transducer ASR
models,” in ICASSP, 2022.

[10] Z. Chen, Y. Zhang, A. Rosenberg, B. Ramabhadran, P. J. Moreno,
A. Bapna, and H. Zen, “Maestro: Matched speech text represen-
tations through modality matching,” in Interspeech, 2022.

[11] H. Sato, T. Komori, T. Mishima et al., “Text-only domain adapta-
tion based on intermediate CTC,” Interspeech, 2022.

[12] A. Mittal, S. Sarawagi, and P. Jyothi, “In-situ text-only adaptation
of speech models with low-overhead speech imputations,” in The
Eleventh International Conference on Learning Representations,
2023.

[13] V. T. Pham, H. Xu, Y. Khassanov, Z. Zeng, C. E. Siong, C. Ni,
B. Ma, and H. Li, “Independent language modeling architecture
for end-to-end ASR,” ICASSP, 2019.

[14] Z. Meng, T. Chen, R. Prabhavalkar, Y. Zhang, G. Wang, K. Au-
dhkhasi, J. Emond, T. Strohman, B. Ramabhadran, W. R. Huang,
E. Variani, Y. Huang, and P. J. Moreno, “Modular hybrid autore-
gressive transducer,” SLT, 2022.

[15] D. Stanton, M. Shannon, S. Mariooryad, R. J. Skerry-Ryan,
E. Battenberg, T. Bagby, and D. Kao, “Speaker generation,”
ICASSP, 2021.

[16] S. Ueno and T. Kawahara, “Phone-informed refinement of synthe-
sized mel spectrogram for data augmentation in speech recogni-
tion,” in ICASSP, 2022.

[17] S. Karita, S. Watanabe, T. Iwata, M. Delcroix, A. Ogawa, and
T. Nakatani, “Semi-supervised end-to-end speech recognition us-
ing text-to-speech and autoencoders,” ICASSP, 2019.

[18] T. Hori, R. Astudillo, T. Hayashi, Y. Zhang, S. Watanabe, and
J. Le Roux, “Cycle-consistency training for end-to-end speech
recognition,” in ICASSP, 2019.

[19] G. Wang, A. Rosenberg, Z. Chen et al., “Improving speech recog-
nition using consistent predictions on synthesized speech,” in
ICASSP, 2020.

[20] M. K. Baskar, L. Burget, S. Watanabe, R. F. Astudillo, and J. H.
Cernocky, “Eat: Enhanced ASR-TTS for self-supervised speech
recognition,” ICASSP, 2021.

[21] Z. Chen, Y. Zhang, A. Rosenberg, B. Ramabhadran, P. J. Moreno,
and G. Wang, “Tts4pretrain 2.0: Advancing the use of text
and speech in ASR pretraining with consistency and contrastive
losses,” ICASSP, 2022.

[22] S. Ueno, M. Mimura, S. Sakai, and T. Kawahara, “Data augmen-
tation for ASR using TTS via a discrete representation,” ASRU,
2021.

[23] G. Kurata, G. Saon, B. Kingsbury, D. Haws, and Z. Tüske, “Im-
proving customization of neural transducers by mitigating acous-
tic mismatch of synthesized audio.” in Interspeech, 2021.

[24] T. yao Hu, M. Armandpour, A. Shrivastava, J.-H. R. Chang, H. S.
Koppula, and O. Tuzel, “Synt++: Utilizing imperfect synthetic
data to improve speech recognition,” ICASSP, 2021.

[25] A. Łańcucki, “FastPitch: Parallel text-to-speech with pitch pre-
diction,” in ICASSP, 2021.

[26] O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary, B. Gins-
burg, S. Kriman, S. Beliaev, V. Lavrukhin et al., “Nemo: a toolkit
for building ai applications using neural modules,” in NeurIPS
Workshop on Systems for ML, 2019.

[27] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and
T. Aila, “Analyzing and improving the image quality of style-
GAN,” in CVPR, 2020.

[28] J. H. Lim and J. C. Ye, “Geometric GAN,” arXiv:1705.02894,
2017.

[29] L. Mescheder, A. Geiger, and S. Nowozin, “Which training meth-
ods for GANs do actually converge?” in ICML, 2018.

[30] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Interspeech, 2020.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML,
2015.

[32] J.-L. Ba, J.-R. Kiros, and G.-E. Hinton, “Layer normalization,”
arXiv:1607.06450, 2016.

[33] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in ICLR, 2019.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
NeurIPS, 2017.

[35] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent
with warm restarts,” in ICLR, 2017.

[36] E. Bastianelli, A. Vanzo, P. Swietojanski, and V. Rieser, “SLURP:
A spoken language understanding resource package,” in EMNLP,
2020.

[37] D. B. Paul and J. Baker, “The design for the Wall Street Journal-
based CSR corpus,” in Speech and Natural Language Workshop,
1992.

[38] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data augmenta-
tion method for automatic speech recognition,” Interspeech, 2019.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in ICLR, 2015.

[40] W. Jang, D. C. Y. Lim, J. Yoon, B. Kim, and J. Kim, “Univnet: A
neural vocoder with multi-resolution spectrogram discriminators
for high-fidelity waveform generation,” in Interspeech, 2021.

[41] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen,
and Y. Wu, “LibriTTS: A Corpus Derived from LibriSpeech for
Text-to-Speech,” in Interspeech, 2019.

[42] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
riSpeech: an ASR corpus based on public domain audio books,”
in ICASSP, 2015.

2932


