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Abstract
Learning discriminative Acoustic Word Embeddings (AWEs)
summarising variable length spoken word segments brings ef-
ficiency in speech retrieval tasks, notably, Query-by-Example
(QbE) Speech or Spoken Term Detection (STD). In this paper,
we add on to RNN based approaches for generating acoustic
word embeddings. The model is trained in an encoder-decoder
fashion on pairs of similar word segments by optimizing a pair-
wise self-supervised loss where the targets are generated of-
fline via clustering. The pairs may be generated with word
boundaries (weak supervision) or via augmentation of unla-
belled word segments (no supervision). Experiments with word
discrimination task on TIMIT and LibriSpeech show state of
the art performance of the proposed approach outperforming
popular RNN AWE approaches in both weakly supervised and
unsupervised settings. The AWEs generated by our model gen-
eralise well to OOV words. On STD tasks performed on TIMIT,
the proposed approach provides speed advantages.
Index Terms: word embeddings, self-supervised learning, spo-
ken term detection, query-by-example, pairwise learning

1. Introduction
Spoken Term Detection (STD) is defined as the task of search-
ing for a spoken query term (a word say, ”cat”) in a collection
of long speech utterances (say, recordings of hour long speech).
It is a zero resource task with the query term and search space
given as audio data with no language specific resources. Unlike
Keyword Spotting, the spoken query terms may also be out-of-
vocabulary (OOV) words [1, 2].

Most approaches to STD typically involve two steps: (a) ex-
traction of sequences of feature vectors from query and speech
utterance, and (b) detection of query in the speech utterance
using different variations of Dynamic Time Warping (DTW)
based template matching techniques. The features extracted
may be spectral features [3, 4], posterior features (vectors indi-
cating posterior probabilities of sub-word units like phonemes)
[5, 6] as well as bottleneck features [7]. The posterior features
may be extracted using Gaussian Mixture Models (GMMs) [5]
requiring no supervision or Deep Neural Networks (DNNs), ei-
ther trained with supervision [6, 8] or trained in an unsupervised
fashion via spectral clustering [9]. After extraction of sequences
of feature vectors from query and speech utterance, a frame-
level similarity matrix is generated with the pair of sequences
over which variations of DTW such as Segmental DTW [5],
[3], Slope-constrained DTW [10], and Sub-sequence DTW (S-
DTW)[11] are used to detect the occurrence of query.

A faster alternative to DTW based approaches is learn-
ing of fixed dimensional vector representations for variable
length spoken word segments i.e. Acoustic Word Embeddings

(AWEs). Representing word segments with their AWE brings
drop in search time as the similarity between two segments boils
down to calculating a cosine or euclidean distance. It also al-
lows us to consider a flexible set of features and make decision
on the basis of information encompassing longer spans of time.

Neural Acoustic Word Embedding (NAWE) models are a
set of encoder models f which input a variable length sequence
of acoustic features X = [xt; t ∈ [T ]] of length T time steps
(word utterances) and output a single fixed-dimensional embed-
ding (AWE) f(X) = e ∈ Rd summarising the acoustic feature
sequence X . Works like [12, 13, 14, 15, 16, 17, 18, 19, 20]
present approaches to learning discriminative AWEs from data
using a number of neural embedding models and training tasks.
In this paper, we add on to Recurrent Neural Network (RNN)
based approaches to generating AWEs and compare our ap-
proach with state of the art approaches [17, 18, 19, 20]. RNNs
are natural candidates for generation of AWEs as by nature they
can handle arbitrary length input sequences.

We use an encoder-decoder RNN architecture as our NAWE
model where the last time-step encoder representation gener-
ated given input word segment is used as AWE. Our model is
trained on pairs of same word utterances which differ in pitch
and rate. We use a novel pairwise prediction task inspired
from pseudo-labelling based self-supervised speech representa-
tion learning approaches like HuBERT [21]. In this task , given
a pair of same word utterances, we predict a pseudo-label as-
signed to each time-step t in each sequence with t time-step de-
coder representation generated from the other sequence in the
pair. The pseudo-labelling is performed with a K-means clus-
tering model trained offline over MFCCs.

We conduct experiments on Word Discrimination task
[22] over OOV words extracted from LibriSpeech and TIMIT
datasets to present how discriminatory and generalizable the
AWEs learnt via our approach is in comparison to SOTA base-
lines. Our training approach outperforms [17, 18, 19, 20] and
MFCCs in terms of Average Precision (AP). We conduct STD
on TIMIT dataset to present speed advantages in using AWEs.

2. Embedding-based STD
Our STD system needs to quickly retrieve from a large col-
lection those segments nearest to a given spoken query. All
the segments and spoken query are converted to AWEs. The
embedding based query-by-example approach, Segmental Ran-
domized Acoustic Indexing and Logarithmic-Time Search (S-
RAILS) system [23] is used for retrieval. S-RAILS uses a ver-
sion of locality-sensitive hashing (LSH) [24, 25] to perform ap-
proximate nearest neighbor search over the AWEs.

The long utterance where we are to detect the query term is
represented as a large search collection of AWEs X = {xi ∈
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Rd; i ∈ [N ]}. The spoken query utterance is also converted to
an AWE q ∈ Rd. S-RAILS uses LSH to provide a fast approx-
imation of the computationally expensive d-dimensional cosine
distance between AWEs. All the AWEs in Rd are converted to
bit vectors or signatures using LSH, such that if xi, xj ∈ X are
close under the cosine distance, their signatures si, sj ∈ {0, 1}b
will agree in most of their entries.

S-RAILS arranges the signatures s(X) = {si; i ∈ [N ]}
into a lexicographically sorted list S. The query AWE q is then
converted to its LSH signature sq ∈ {0, 1}b and its location in
the sorted list S is retrieved in O(log b) time. A set of approxi-
mate nearest neighbors can be retrieved by looking at B entries
in the list S before sq and B entries after sq . Note, bits appear-
ing earlier in the signatures have far more influence on whether
xi, xj ∈ X will be judged similar. S-RAILS performs the lex-
icographic lookup under P different permutations of the bits to
eradicate this effect.

S-RAILS has 3 parameters: the signature length b, search
beam-width B and the number of permutations of the bits P .
Increasing any of these parameters improves the approximation
to the cosine distance with a trade-off in memory required and
run-time. Building the index requires at-most O(PbN logN)
time while querying the index requires O(B+Pb logN) time.

3. Related Works and Baselines
RNN based NAWE models use a BiLSTM encoder network
which takes in MFCC feature sequence X and outputs context
representation zt ∈ Rd at each time step t. This results in an
output sequence of representations Z = [zt; t ∈ [T ]]. The last
time step representation zT ∈ Z is chosen as the acoustic word
embedding e corresponding to the sequence X . The model is
represented as,

f(X) = e = zT (1)

[17, 18] are two weakly-supervised state of the art ap-
proaches in training such NAWE models. Both approaches re-
quire word boundaries and word label information as the mod-
els are trained on batches of triplets (a, p, n) where anchor a is
a word utterance, positive p is an utterance of the same word
as anchor, and negative n is an utterance of another word. To
form the triplets we further require the word label of each word
utterance in dataset.

[17] trains their model f with a siamese weight sharing
scheme on triplets of MFCC feature sequences (a, p, n) where
(a, p) is a positive pair corresponding to the same word and n
is a negative corresponding to another word. A cosine hinge
loss function is optimized to learn discriminatory AWEs which
is given as follows,

Lhinge = max{0,m+ dcos(f(a), f(p))− dcos(f(a), f(n))}
(2)

where dcos(j, k) = 1− cos(j, k) , cos(j, k) = j·k
|j||k| is the

cosine dissimilarity function and m is a positive margin.
Unlike [17],[18] integrates word label information as input

in training their NAWE model. The word labels are converted to
character sequences c = [ct; t ∈ [L]] of variable length L where
ci is a one-hot encoding of the ith character in the word. A sep-
arate character based word embedding network g is used to gen-
erate a fixed dimensional vector embedding for input character
sequence. A BiLSTM is used as network g which takes in char-
acter sequence C and outputs the last time step representation
as word embedding w = g(c) = g(cL).

[18] trains their model f with pairs (a, n) of dissimilar
MFCC feature sequences and optimizes a multi-view loss func-

tion,
Lmulti = L1 + L2 (3)

The first term in Lmulti trains the anchor AWE ea = f(a)
to discriminate anchor word ca embedding wa = g(ca) from
negative word cn embedding wn = g(cn). It is defined as,

L1 = max{0, m̃+ dcos(f(a), g(ca))− dcos(f(a), g(cn))}
(4)

where m̃ is a margin parameter. The second term in Lmulti

trains the anchor word embedding wa to discriminate anchor
AWE ea from negative AWE en = f(n). It is defined as,

L2 = max{0,m+ dcos(f(a), g(ca))− dcos(f(n), g(ca))}
(5)

where m is a positive constant margin.
[19, 20] are SOTA approaches which train their model f

with pairs (a, p). Such approaches don’t necessarily need the
word boundaries and word label information to generate pairs.
Even in the case where the dataset only contains unlabelled au-
dio, we can sample random audio segments and generate a posi-
tive for each segment via application of different augmentations
and noise to it. Hence, such approaches can be trained totally
un-supervised as well.

[19] trains their model f in encoder-decoder fashion. The
NAWE encoder network f reads the input sequence while se-
quentially updating it’s hidden states. A decoder network g
generates a sequence of representations with the last time step
encoder representation or NAWE f(a). The model is first
pre-trained to reconstruct the input MFCC a at each time step
t with t-time step decoder representation gt(f(a)) generated
with NAWE f(a). It is then trained on pairs (a, p) to recon-
struct MFCC feature at t-time step of p with t-time step decoder
representation gt(f(a)). For both the tasks, mean squared error
is used as the reconstruction loss.

[20] uses the contrastive task introduced in [26] where the
targets are generated via simulation of MIPS over batches of
pairs of AWEs of word segments corresponding to the same
word, B = {eai , epi}Ni=1 where N is the batch size. A mini-
batch of NAWEs of size 2N is generated from batch B over
which MIPS is conducted. A query NAWE from the mini-
batch is sampled and via MIPS the NAWE in the mini-batch
which gives the maximum cosine similarity score with query
is returned. Given the information of which pairs of NAWEs
actually correspond to similar word utterances from batch B,
a contrastive task is defined with the self-supervision that for
each NAWE eai , the most similar NAWE in the mini-batch is
epi . The loss is defined as,

LMIPS = −
N∑

i=1

log
exp(cos(eai , epi))∑

k∈{a,p}
∑N

j=1 exp(cos(eai , ekj ̸=i))

(6)

4. Our Learning Approach
We train our NAWE model on batches of pairs of same word
utterances (a, p) like [19, 20]. The word utterances in each
pair in the batch are converted to MFCC sequences (Xa, Xp)
of length Ta and Tp time steps respectively. We use the same
NAWE implementation as [17, 18, 19, 20]. A BiLSTM encoder
model takes in each MFCC sequence Xi∈{a,p} and generates
Ti length sequence of representations Zi. The Ti-time step rep-
resentation ziTi

∈ Zi is used as AWE ei corresponding to Xi

giving the following equation for our NAWE model f ,

f(Xi) = ei = ziTi
(7)
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Our NAWE model is trained on pairs (Xa, Xp) in an
encoder-decoder fashion like [19] but instead of reconstructing
t time-step feature vector in each input sequence Xi∈{a,p}, we
predict a noisy target or pseudo-label with t time-step decoder
representation generated with NAWE f(Xj ̸=i,j∈{a,p}) = ej
of the other sequence Xj in the pair. The pseudo-label at each
time-step in input sequence Xi is generated by a K-means clus-
tering model h which is trained offline over MFCC features. We
demonstrate our training approach in Figure 1.

A decoder BiLSTM g inputs AWE ei generated from Xi

and outputs a sequence of decoder representations time-aligned
with the other sequence Xj in the pair. The sequence of decoder
representations is given as Oij = [oit = gt(ei); t ∈ [Tj ]] where
Tj is length of sequence Xj . At each time step t ∈ [Tj ], we use
decoder representation gt(ei) to predict the pseudo-label at that
time-step in Xj .

4.1. Pseudo-label Generation

We train a K-Means clustering model h in an offline cluster-
ing step to generate pseudo-labels for each time step t of each
sequence Xi in pair (Xa, Xp). Clustering model h generates
target sequence h(Xi) = Ti = [τ i

t ; t ∈ [Ti]] time aligned
with Xi. Each target τ i

t can be any label in finite collection
A = [K] of K = 100 pseudo-labels. We choose K = 100 as
we want the pseudo-labels to be sub-phonetic. We did experi-
ments with K ∈ {50, 100, 1000} pseudo-labels. Increasing K
brought only a slight improvement in performance.

4.2. Pairwise Prediction Task

For each time step t ∈ [Tj ], we use decoder representation oit ∈
Oij to identify the true target τ j

t ∈ Tj at time step t for xj
t ∈

Xj(see Fig. 1). The loss is defined as ,

L = −
∑

i,j∈{a,p}

Tj∑

t=1

log
exp cos(Woit, vτj ̸=i

t
)

∑K
τ=1 exp cos(Woit, vτ )

(8)

where cos(, ) is cosine distance, W ∈ Rd×d′ is a projection
matrix and vτ ∈ Rd′ is embedding corresponding to target τ .

vτ is used to calculate the probability of decoder repre-
sentation oit ∈ Oij mapping to pseudo-label τ ∈ A. Hence,
we randomly initialize K such embeddings forming codebook
V = [vk; k ∈ [K]] where member vk ∈ Rd′ is an embedding
representative of pseudo-label k ∈ A. Minimization of loss L
tunes the encoder-decoder parameters as well as codebook V .

4.3. Iterative Refinement of Targets

We perform multiple iterations of training, with each itera-
tion labelling the input word-segment MFCC sequences to our
NAWE with a new generation of pseudo-labels. This performs
iterative refinement of the pseudo-labels with each generation
performing better semantic labelling of input MFCC sequences.

In the first iteration, we generate targets via K-means clus-
tering over MFCC features. The clustering model h takes in
MFCC Xi to generate target sequence Ti = h(Xi).

In further iterations of training, we generate new genera-
tion of targets via K-means clustering over the discriminatory
decoder representations generated by encoder-decoder model
trained in previous iteration. The K-means clustering model h
in mth training iteration now takes in decoder representation se-
quence Om−1

i = {oit; t ∈ [Ti]} (generated by decoder trained
in m − 1 training iteration) time-aligned with input MFCC se-
quence Xi to generate target sequence Ti = h(Om−1

i ).

Figure 1: Loss calculation. Xa and Xp are same word utter-
ances but differ in rate, pitch, and voice. The targets for loss L
are generated by clustering model h trained offline via K-Means
clustering over MFCCs or pre-trained decoder representations.

5. Experiments
We evaluate our approach to training NAWEs with approaches
[17, 18, 19, 20] in generating discriminatory AWEs. We per-
form Word Discrimination task [22], which is used to for rapid
evaluation of representations for STD, on TIMIT [27] and Lib-
riSpeech [28] datasets. This task has been used in [18, 19, 20] to
evaluate AWEs. We evaluate models trained with weak super-
vision i.e. word boundary and word label information is used
to generate pairs or triplets for training, and no supervision i.e.
trained on random 1s segments of audio.

Pairs of variable length word utterances are fed to the
NAWE models which generate an AWE for each. A cosine dis-
tance is then calculated between the two AWEs to determine
whether the pair of utterances are same word or not. We follow
[18, 19, 20] in using AP calculated with ground-truth for evalu-
ation. We conduct 10 trials of training and evaluation and have
provided the mean AP and variance in our results (see Table 2).

5.1. Data

5.1.1. Training

Weak Supervision. We sample utterances of 887 words in the
TIMIT [27] training split for training.The total number of dis-
tinct utterances used for training amount to 10.4K utterances.
The number of characters in each of the words range from 3 to
15. Each word utterance range in duration from 0.25s to 1.17s.
Un-supervised. We sample random 1s segments of audio from
the LibriSpeech [28] 100 hours dataset. Similar pairs are gen-
erated via application of time-stretch and pitch-shift to audio.

5.1.2. Testing

We sample utterances of 887 words in the TIMIT [27] testing
split disjoint from words used in training for evaluation of per-
formances of the models on OOV words. We perform Word
Discrimination task on 88.8K pairs of word utterances sam-
pled from our test dataset. The evaluation dataset contains equal
number of positive and negative pairs.

We further evaluate the generalizibility of the AWEs to
different dataset. We conduct Word Discrimination task over
93.2K pairs of word utterances sampled from LibriSpeech [28]
100 hours dataset. A total of 1055 OOV words were used. The
number of characters in each word vary in the range 3 to 12.
The word boundaries were extracted via force alignment with
transcription. The duration of each word utterance vary in the
range 0.3s to 1.49s.
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5.2. Architecture Details and Hyper-parameters

We present the model architectures used in our experiments in
Table 1. We use ADAM [28] optimizer and use a linear schedule
of learning rate 0.001 with 8% of the training steps as warm-up.

Table 1: BiLSTM Model Architectures

Models Layers Hidden AWE
Cells dimension

Siamese Triplet [17] 3 256 512
Multi-View [18] 2 512 1024
EncDec-CAE [19] 3 256 512
ContrastiveRNN [20] 3 256 512

Ours 3 256 768

The margins used in eqs 2, 5 are set to 0.4. The margin
parameter m̃ used in eq 4 is implemented as,

m̃ = mmax
max{dmax, editDistance(ca, cn)}

dmax
(9)

where mmax is maximum margin set to 0.7 and dmax is the
maximum distance between positive word and negative word in
the dissimilar pairs used for training in [18].

5.3. Results

Table 2: Word Discrimination (Average Precision)

Models TIMIT OOV LibriSpeech OOV

MFCC + DTW 93 85

Weak Supervision (Trained on TIMIT)

Siamese Triplet [17] 93.0 ±0.8 78.3 ±0.7
Multi-View [18] 92.5 ±0.3 77.0 ±1.4
EncDec-CAE [19] 96.2 ±0.3 83.3 ±0.4
ContrastiveRNN[20] 94.3 ±0.4 82.4 ±2.0

Ours 98.8 ±0.03 86.4±0.1

No Supervision (Trained on LibriSpeech)

EncDec-CAE [19] 80.8 ±0.3 77.7 ±0.4
ContrastiveRNN[20] 80.1 ±0.4 75.1 ±1.0

Ours 86.8 ±0.13 81.4±0.2

Weak Supervision. We observe our approach to outperform
all the baselines in generating discriminatory AWEs in terms
of AP (see Tab.2) and Detection Error Trade-off (DET) curves
(see Fig.2). All the NAWE models were trained on TIMIT
and tested on TIMIT OOV and LibriSpeech OOV words. Our
model presents SOTA performances on both datasets and gener-
alises the most. Our approach generates better AWEs than [19]
(SOTA, 2019). We present performances of raw MFCC where
similarity scores between pairs are generated via DTW. We ob-
serve NAWEs to be more discriminative than MFCC (Fig. 2).
We perform only 2 iterations of training and observe 1% per-
formance increase with refinement of targets.
Un-supervised. Our approach performs the best in the un-
supervised setting. Our model generates AWEs comparable
to MFCC features in terms of Average Precision (see Tab.2)

Figure 2: DET Curves on TIMIT OOV and Librispeech OOV.

Table 3: Spoken Term Detection on TIMIT

Models ATWV Search Time (s)

MFCC + S-DTW 0.55 0.002
EncDec-CAE [19] + S-RAILS 0.51 0.00009

Ours + S-RAILS 0.53 0.00009

and DET curves (see Fig.2), while being trained on random
1s segments of audio. The models are evaluated on strictly
OOV words sampled from TIMIT and LibriSpeech. Our NAWE
model generalises well to different datasets.
Spoken Term Detection. We conduct STD on 1638 utter-
ances in TIMIT test. We choose 612 words which occur at-
most once in each of the utterances as queries to our detec-
tor system. We generate a query set Q with utterances of the
query words extracted from our validation split of utterances
in TIMIT train. For a given query q ∈ Q and utterance X ,
we detect and localize q in X . We implement a baseline STD
system where we use S-DTW over MFCC features to detect
and localize query. We split the search utterance to overlap-
ping segments of a fixed length of 0.5s. There is an overlap
of 0.25s between two consecutive segments. The NAWE based
STD systems converts query to AWE eq and the utterance, now
splitted to a sequence of overlapping segments to a sequence of
AWEs f(X) = [ei; i ∈ [N ]]. We detect and localize query
using S-RAILS with b = 1024 bits, P = 16 permutations and
choose the top match as hit. We use word boundary informa-
tion in each utterance to calculate Actual Term Weighted Value
(ATWV) [29] (the larger the better). AWEs bring 2 orders of
search time drop while giving comparable ATWV to MFCCs
(see Tab.3). The search performance may be improved by split-
ting the utterance to overlapping segments from some minimum
duration to some maximum duration (instead of fixed duration)
and using S-RAILS to query over an enhanced dataset of AWEs.

6. Conclusion
In this paper, we present a novel pairwise learning approach to
learning discriminative AWEs. Experiments on Word Discrimi-
nation and STD task show SOTA performance of our approach.

Decoder g representations and codebook of embeddings V
may be used to perform labelling of acoustic segments by our
model. Hence, we can convert the query and long utterance in
our STD task to strings. We wish to explore if we can use fast
text retrieval algorithms to perform detection of query.

The codes are available in https://github.com/
madhavlab/2023_adhiraj_encdecPairwisePred.
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