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Abstract
Acoustic to articulatory inversion (AAI) is the task of pre-

dicting articulatory trajectories from speech acoustics. An AAI
model is typically optimised with regression-based objective
functions on continuous articulatory movement targets. In this
work, we explore an alternate approach by classifying bins of
quantised articulatory movements. We extend it by utilising or-
dinal regression, along with a novel approach involving KL Di-
vergence loss between a target Gaussian posterior and the pre-
dicted one. We train transformer AAI models with MFCC and
TERA acoustic features, with various quantisation types (uni-
form vs non-uniform) and bins. Using 16 subjects’ acoustic-
articulatory data, we evaluate the results with correlation coef-
ficient (CC) and root mean squared error on unseen utterances
from seen and unseen speakers. While the quantization type
did not alter the AAI performance, we find that the highest CC
(0.8838) is achieved with TERA features using ordinal regres-
sion, also with the proposed KL divergence loss at 64 quanti-
sation bins, which is found to be on par with the CC (0.8856)
using the regression-based approach. In fact, reducing the num-
ber of quantisation bins to 16 does not significantly change the
AAI performance.
Index Terms: acoustic to articulatory inversion, electromag-
netic articulography, sequence to sequence learning

1. Introduction
Articulatory movements from Electromagnetic Articulography
(EMA) denote the positions of various speech articulators.
These are highly dynamic, present at a high frequency and de-
pend on the morphology of the speaker. It is also a one-to-many
mapping, identical speech can be produced by different vocal
tract configurations [1]. Knowledge of articulatory movements
is beneficial to various speech tasks such as speech recognition
[2, 3], speaker verification [4], speech synthesis [5] and so on.
In the absence of direct articulatory movements, it can be esti-
mated from speech, this process is known as acoustic to articu-
latory inversion (AAI).

Various methods have been utilised in the past to learn the
AAI mapping such as codebooks [6, 7], Gaussian Mixture Mod-
els (GMM) [8, 9, 10], Hidden Markov Models (HMM) [11].
Different deep learning-based sequence to sequence learning
approaches have also been used, such as Convolutional neural
networks (CNN) [12, 13], Recurrent neural networks (RNN)
[14, 15, 16], wavenet [17], transformers [18, 19, 20] etc. While
the networks used to learn feature representation are an impor-
tant design choice to improve the results, the objective func-
tions to train the networks are also equally important. The loss
landscape can differ for different objective functions, hence un-
derstanding it better is important. In AAI, Mean squared er-

ror loss is commonly used to learn the mapping. This is con-
venient since articulatory trajectories are smoothly varying se-
ries of data which can be learnt through regression. Addition-
ally, there have been approaches which augment the learning by
adding auxiliary losses as in [21, 22, 23, 24].

In this work, we explore a different formulation of this
problem by quantising articulatory movement targets. In the
past, articulatory movements have been processed as hyper-
cube codebooks and the required parameters retrieved based
on the acoustic entry [25, 26]. Here, we use the sequence-to-
sequence learning methodology and replace the continuous ar-
ticulatory targets with their quantised bins. Since this process
introduces quantisation error, we experiment with varying quan-
tisation bins. Moreover, each speech articulator has a different
density and range of motion, so we investigate if non-uniform
or variable quantisation is necessary.

With quantised articulatory targets, we can use cross en-
tropy over predictions on each frame, and each articulator to
learn the correct quantised bin to predict. With this formula-
tion, it lacks information on the closeness of the bins, due to
which the performance can diminish. In order to alleviate this,
there are approaches involving ordinal regression/classification
[27] which computes an expectation as well with an L1 loss,
so that the combined objective function will have a measure of
the range of predicted values. We further extend this with a
simple alternative by constructing a Gaussian probability den-
sity function centred around the target quantised bin and using
KL Divergence to enforce it on the predictions. Further, we
also validate whether quantisation can provide additional useful
measures, such as uncertainty in the prediction.

Some of the learning methodologies used in prior work
such as deep mixture networks [28, 29, 30] are capable of
evaluating prediction confidence. This is estimated with
probability density over the predicted articulatory trajectories.
Regression-based approaches are unable to provide such
confidence measures, though they are able to estimate artic-
ulatory movements with better performance. By combining
sequence-to-sequence learning and quantised target prediction,
this line of work can be useful in measuring uncertainty in the
prediction of articulatory movements.

Here are the contributions of our work,

• We explore the use of quantised articulatory movement tar-
gets for AAI and compare them with regression-based AAI

• We test out different extensions for quantisation and objective
functions and report the results on models trained with two
different input features - MFCC and TERA, and report on
seen and unseen speaker performance.

We analyse the quantised posterior prediction to gain more in-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

5147 10.21437/Interspeech.2023-1593



sight into the uncertainty involved with AAI prediction. In the
following sections, we first summarise the dataset, followed by
the details involved in our proposed methodology, experimental
setup and evaluation, ending with results and conclusions of our
study.

2. Dataset
In this work, acoustic and articulatory data are collected simul-
taneously for 460 sentences from the MOCHA-TIMIT corpus
[31]. The recordings from 10 subjects are used for training,
comprising of 6 males and 4 females. Further, 6 subjects (3
Male, 3 Female) are taken for unseen subject evaluation. The
speech is recorded using a microphone [32] and the articulatory
movements are captured using Electromagnetic Articulagraph
AG501 [33].
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Figure 1: Schematic diagram indicating the placement of EMA
sensors [14]

As shown in Figure 1, the data from 6 articulators are cap-
tured, resulting in 12 dimension articulatory trajectories - ULx,
ULy , LLx, LLy , Jawx, Jawy , TTx, TTy , TBx, TBy

, TDx, TDy . The training data covers around 4.3 hours of
speech. To validate the generalisation of our methods, we re-
port scores on unseen speakers as well.

3. Proposed methodology
3.1. Neural network architecture

We use a non-autoregressive encoder-only transformer neural
network [34, 18]. For the baseline regression based AAI (r-
AAI), the output features are projected to 12 dimensions to
predict the articulatory trajectories (resulting in N ∗ 12 predic-
tion where N is the sequence length) and optimised with Mean
Squared Error (MSE) loss. For quantised AAI prediction (q-
AAI), the output features are projected to 12 ∗ K dimensions
where K is the number of bins available after quantisation (
resulting in N ∗ 12 ∗K predictions). This is followed by soft-
max over each frame and articulator dimension and optimised
as mentioned in Section 3.4. With q-AAI, the final articulatory
movements are obtained after decoding the posterior, we have
reported on argmax (greedy) decoding and decoding with ex-
pectation.

3.2. Acoustic features

We train with two types of input acoustic features - Mel Fre-
quency Cepstral Coefficients (MFCC) and TERA [35]. We use
MFCC since it has been consistently used in AAI literature, and
TERA, since it has performed well in recent work [36].

3.3. Types of quantisation

We experiment with 3 types of quantisation.

3.3.1. Uniform constant range (UCR)

This is the default quantisation scheme where the data is uni-
formly quantised to K bins using the same lower and upper
bounds for all articulators. Let K be the number of quan-
tisation bins and [a, b] be the quantisation range, such that
a = min{EMAtrain)−∆ and b = max{EMAtrain}+∆,
where EMAtrain is the set of all ground truth articulatory
movements and ∆ is a fixed offset to cover an additional range
for unseen data. Thus, the quantisation process Q is a function
of a, b and K, returning the quantised bin L for every value in
every frame and every articulator in EMA ground truth data.

L = Q(EMA, a, b,K)

3.3.2. Uniform variable range (UVR)

This is the quantisation scheme where the data is uniformly
quantised to K bins using articulatory specific lower and upper
bounds. The procedure is the same as the previous one except
that a and b are determined for each articulator. This is because
the range of movements of each articulator is different and there
might be advantages in modelling it separately.

3.3.3. Non-Uniform constant range (NUCR)

This is the quantisation scheme where the data is non-uniformly
quantised to K bins using the bins obtained after Llyod-max
quantisation1. Here, we use global a and b for all articulators.

3.4. Optimisation types

In q-AAI, the neural networks predict 12 ∗ K logits for each
frame, on which softmax is applied, with K quantisation bins.
This acts as the posteriors which have to be optimised. Let N be
the sequence length and M the number of articulatory features.
Let Fij are the logit and Lij are the true quantisation bin for
that frame i and articulatory j.

3.4.1. Cross Entropy loss (CE)

A straightforward approach is to apply cross entropy over each
frame and each articulator to classify the correct quantisation
bin.

LossCE =
1

N ∗M
N∑

i=1

M∑

j=1

CrossEntropy(Fij , Lij)

3.4.2. Expectation loss (EXP)

We further extend it by applying ordinal regression as used in
[27], which calculates the deviation from the expectation

Lossexp =
1

N ∗M
N∑

i=1

M∑

j=1

SmoothL1(Lij ,
K∑

k=1

P (k)ij · k)

Where SmoothL1 is the smooth L1 loss 2 which is a mix-
ture of L1 and MSE loss. This loss can be directly combined
with cross-entropy such that,

Loss = LossCE + Lossexp

With this approach, the output can be decoded with the ex-

pectation
K∑

k=1

P (k)ij · k

1https://www.mathworks.com/help/comm/ref/lloyds.html
2https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Table 1: This table represents the correlation coefficient (CC) for Uniform constant range (UCR), Uniform variable range (UVR), and
Non-Uniform constant range (NUCR) quantisation types, with different objective functions. The standard deviation across articulators
is shown in brackets. The results for decoding with argmax and expectation are shown. All models are trained with 64-bin quantised
articulatory movement targets. The baseline r-AAI results are CC of 0.8581(0.056) for MFCC and 0.8856(0.048) for TERA.

CE CE+EXP EXP CE+KL KL
argmax EXP argmax EXP argmax EXP argmax EXP argmax EXP

UCR MFCC 0.8335
(0.07) - 0.8416

(0.063)
0.8534
(0.057)

0.5717
(0.074)

0.8577
(0.057)

0.8357
(0.065)

0.8484
(0.06)

0.8577
(0.055)

0.8601
(0.054)

TERA 0.8633
(0.061) - 0.8677

(0.056)
0.8786
(0.051)

0.6148
(0.091)

0.8839
(0.051)

0.8626
(0.059)

0.8743
(0.054)

0.8804
(0.049)

0.8828
(0.049)

UVR MFCC 0.8332
(0.065) - 0.8367

(0.064)
0.8482
(0.059)

0.6111
(0.117)

0.8544
(0.058)

0.8406
(0.065)

0.8513
(0.06)

0.8491
(0.059)

0.8522
(0.059)

TERA 0.8614
(0.059) - 0.869

(0.057)
0.8784
(0.052)

0.6466
(0.098)

0.8805
(0.051)

0.8612
(0.06)

0.8724
(0.055)

0.8724
(0.054)

0.8759
(0.054)

NUCR MFCC 0.8388
(0.067) - 0.842

(0.063)
0.8547
(0.057)

0.7248
(0.07)

0.854
(0.059)

0.8341
(0.069)

0.846
(0.064)

0.8499
(0.062)

0.8487
(0.062)

TERA 0.8599
(0.061) - 0.8677

(0.057)
0.8782
(0.052)

0.7531
(0.063)

0.8805
(0.052)

0.8603
(0.061)

0.8706
(0.056)

0.877
(0.054)

0.876
(0.054)

3.4.3. KL loss

We define Gaussian probability density functions over quanti-
sation bins, parameterised by the ground truth quantised artic-
ulatory movement as mean and the standard deviation as a hy-
perparameter, as shown below -

f(x)ij =
1

σ
√
2π

e−
1
2
(
x−Lij

σ
)2

This formulation defines Gaussian centred around every quan-
tised articulatory movement with σ as a hyperparameter, we
use σ = 4. This is evaluated at x = k where k =
(1, 2, 3, ..,K). This is repeated for all i = (1, 2, 3, .., N)
and j = (1, 2, 3, ..,M). Let P (x)ij be the distribution from
softmax on neural network output. We compute the Kullback-
Leibler divergence (KLD) objective, with pointwise KLD in py-
torch3.

LossKL =
1

N ∗M ∗K
N∑

i=1

M∑

j=1

K∑

k=1

f(k)ij(logf(k)ij−logP (k)ij)

This loss can be combined with ordinal or cross-entropy. We
share an efficient implementation of this loss as part of the code-
base, with which the training time is comparable to r-AAI base-
line.

4. Experimental setup
We train separate models with MFCC (13-dimensional) and
TERA (features extracted from the last layer) as input acous-
tic features. MFCC is extracted with librosa 4 and TERA is
extracted with s3prl 5. The input features as well as the target
articulatory movements are pre-processed to be at 100Hz. Ar-
ticulatory movements are standardised for each utterance, sep-
arately for each articulator. Zero padding is performed at the
batch level and padding values are masked for transformer self-
attention to train the AAI models. We use adam optimizer with
a learning rate of 0.0001, with early stopping based on valida-
tion loss.

3https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html
4https://librosa.org/doc/main/generated/librosa.feature.mfcc.html
5https://github.com/s3prl/s3prl

Table 2: This table represents the correlation coefficient (CC)
and root mean squared error (RMSE) for MFCC and TERA in-
put features, for varying quantisation bins for models with KL
configuration for UCR.

8 16 32 64 128

MFCC CC 0.8047
(0.07)

0.8534
(0.056)

0.8546
(0.058)

0.8601
(0.054)

0.8505
(0.056)

RMSE 1.845
(0.0590)

1.203
(0.235)

1.193
(0.271)

1.155
(0.207)

1.163
(0.204)

TERA CC 0.8443
(0.059)

0.8799
(0.051)

0.8829
(0.049)

0.8828
(0.049)

0.8742
(0.05)

RMSE 1.819
(0.060)

1.132
(0.241)

1.1308
(0.285)

1.090
(0.223)

1.1109
(0.211)

We use data from 10 subjects for training AAI models. 80%
of the sentences for each subject are used for training, 10% for
validation and 10% for testing. This consists of seen speaker
evaluation. Further, we also evaluate on 10% of unseen sen-
tences for 6 unseen speakers. We evaluate our models with cor-
relation coefficient (CC)[37] and also report root mean squared
error (RMSE). All models are trained using pytorch on one
NVIDIA RTX 2080ti GPU. All the codes will be made avail-
able publicly.
In the next section, we will be showing the following results
• Use r-AAI models as the baseline with TERA and MFCC as

input
• Train q-AAI models in various configurations - varying quan-

tisation bins, quantisation types, and objective functions for
classification, and validate if it performs as well as r-AAI.

• Report correlation coefficient for all different configurations,
for seen and unseen speakers

• Visualise the posterior of different objective functions to
demonstrate additional functionality of this approach.

5. Results
5.1. Quantisation types and objective functions

Table 1 shows the correlation coefficient for different types of
quantisation and objective functions. Compared to r-AAI, we
find that there is a reduction in performance using cross entropy
objective, for both MFCC and TERA. Further, we see that by
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applying the ordinal classification approaches (EXP and KL),
the metrics are on par with r-AAI. With EXP ordinal classifi-
cation, we find that decoding with expectation leads to better
performance than argmax decoding. This is expected since the
expectation objective lets the logits shift away from argmax out-
puts, making the posterior asymmetric around the final predic-
tion. This is also brought up in the work which uses EXP loss
[27]. We then observe that our alternative - KL based ordinal
loss also performs well. This has the additional benefit of the
posterior scores centring around the argmax prediction.

5.2. Effect of number of quantisation bins

For Table 2, we show the results for models trained with KL
loss. The table shows various quantisation bins being used rang-
ing from 8 (3 bits) to 128 (7 bits). We find that there is a degra-
dation in CC with 8 bins. On the other hand, the results are
fairly consistent for both MFCC and TERA number of bins ≥
16. We also report the RMSE for these models (they are not
reported for all configurations due to space constraints).

5.3. Unseen speaker performance

Evaluating AAI models on unseen speakers is important to en-
sure the generalisability of AAI. In table 3, we report r-AAI
as well as q-AAI models in different configurations, trained 64
bins. We find that the results are on a similar range of baseline
for unseen speakers as well.

Figure 2: Figure shows the posterior values from models (TERA
input, 64 quantisation bins, UCR) with different objective func-
tions, for LLy trajectory for a seen male speaker from test ut-
terance. The black line corresponds to the ground truth artic-
ulatory trajectory and the red line corresponds to the argmax
predicted output. Note that the ground truth articulatory move-
ment is shifted to be shown on the posterior values.

5.4. Evaluating posterior heatmaps

Figure 2 shows the posterior values (output after softmax) as
heatmaps of different models. Each output is of shape 64 ∗ 210

Table 3: This table represents the correlation coefficient (CC)
for 6 unseen speakers, for CE, EXP and KL configurations
(UCR), with MFCC and TERA features. The r-AAI baseline
is also reported. We find that both EXP and KL based classi-
fication approaches are on par with r-AAI in unseen speaker
evaluation.

MFCC TERA
baseline 0.7041(0.114) 0.7546(0.103)
CE argmax 0.7048(0.114) 0.7402(0.099)

CE + EXP argmax 0.6975(0.113) 0.7389(0.103)
EXP 0.7087(0.109) 0.7479(0.102)

KL argmax 0.7062(0.107) 0.7494(0.101)
EXP 0.7093(0.107) 0.7523(0.102)

with 64 quantisation bins and 210 frames. Note that the inten-
sity range of each model is different, denoted on the right. We
observe that for models with CE and KL, there are few regions
with high probability, apart from which the probability mass is
quite evenly distributed. This is not ideal since it doesn’t reflect
confident predictions. On the other hand, for KL model, we see
that there is a relatively higher value over the argmax prediction,
with the mass decaying on moving away from argmax. This is
due to applying a fixed Gaussian over the labels. This approach
shows promise on identifying uncertainty, such as training with
learnable variance. We will expand on these in our future works.

5.5. Smoothing

Since we estimate movements with quantised bins, a question
arises whether the predicted trajectories are smooth enough.
The earlier methods of AAI with codebooks required post-
processing of smoothing. To test this, we use different post-
processing such as quadratic and Kalman smoothing and find
that there is no improvement in CC or any noticeable difference
in the trajectories for 64 bin models. Hence, we report all results
without any post-processing.

6. Conclusions
In this work, we view AAI task as a classification of bins corre-
sponding to quantised articulatory movements. We test this ap-
proach with various quantisation methods, quantisation bits and
objective functions. We compare with AAI baseline of mean
squared error objective and report the scores for seen and un-
seen speakers. We find that the results of q-AAI are consistent
with varying quantisation schemes. The default classification
method has a drop in performance. This degradation can be
removed by involving ordinal classification, where we also pro-
pose a novel training scheme with Gaussian labels, optimised
with KL Divergence. We experiment with a varying number of
quantisation bins and observe that 6 bits of EMA are sufficient
to reach baseline AAI results. For all configurations, we re-
port the correlation coefficient on MFCC and TERA input fea-
tures and find that with ordinal classification approaches, the
performance is on par with baseline AAI. Further, we show that
the quantisation posterior could act as a good representation of
the uncertainty involved in articulatory movement prediction in
AAI. While this approach does not provide any further bene-
fit in terms of performance when compared to the baseline, this
formulation shows promise across various new methods that can
be applicable to AAI. We shall cover these in our future works.
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