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Abstract
Deep neural network (DNN) has made impressive progress in
sound source localization (SSL) tasks with the hard n-hot labels
that represent specific directions-of-arrivals (DOAs). However,
recent study suggested soft DOA labels, considering the cor-
relations between targets and nearby DOAs. In this study, to
effectively train a DNN using soft labels, we propose deeply
supervised curriculum learning (DSCL) by adopting the two
techniques for the DNN, deep supervision (DS) and curricu-
lum learning (CL). We train a DNN to solve SSL problems
progressing from easier to harder, expecting the DNN would
gradually reduce the angular region of the target DOAs. It is
gained by various resolution soft targets for the different DNN
layers to deeply supervise the DNN, while increasing the an-
gular selectivity of the targets from the early to late stages of
training by CL. Proposed method was verified on datasets with
multi-speakers, and exceeded the hard-label methods with great
improvements.
Index Terms: sound source localization, direction-of-arrival,
deep neural network, curriculum learning, deep supervision

1. Introduction
Sound source localization (SSL) aims at estimating the
direction-of-arrival (DOA) of each sound source based on the
signals received by a microphone array. Although many tradi-
tional SSL approaches such as the generalized cross-correlation
phase transform [1], steered response power with phase trans-
form [2], and multiple signal classification (MUSIC) [3] meth-
ods, have been widely adopted, recent studies exploit deep neu-
ral networks (DNNs) to solve SSL problems [4–11]. Since
DNNs are typically trained using a supervised deep learning
method, the selection of target labels is crucial to train DNN-
based SSL models to effectively estimate the DOAs of sound
sources. Specifically, we focus on the DNN-based SSL ap-
proach that performs classification of DOAs within a closed set
of DOA labels.

DOA target labels for training DNN-based SSL models
can be broadly classified into two categories: hard [5, 12] and
soft [6] labels. The SSL problem is firstly formulated as a DNN-
based classification problem in [4], and the posterior probabil-
ity of the target DOAs are used as a target to specify the tar-
get directions. In [5], n-hot vector, where target directions are
assigned as one and others as zero was used as the hard la-
bel for multi-speaker localization. However, more recent stud-
ies [6–9] argued that hard labels do not fully consider the cor-
relations between adjacent DOAs, which may not sufficiently
reflect the physical behavior of microphone array signals partic-
ularly when the DOA classifier uses high-resolution DOA tar-
gets. To deal with this problem, He et al. [6] defined the soft

DOA labels by a probabilistic method by utilizing Gaussian-
like functions, whose mean values are the target azimuths and
variances determine the angular selectivity or the uncertainty of
the DOA estimates produced by the DNN. Such target labels are
designed to naturally consider the correlations between adjacent
directions and were shown to be effective for training DNNs for
SSL.

In this study, to effectively train a DNN-based SSL model
using the soft DOA labels, we propose deeply supervised cur-
riculum learning (DSCL) method. First, inspired by the deep
supervision (DS) [13–15] technique that supervises intermedi-
ate DNN layers for improved error propagation, we propose to
deeply supervise multiple layers of DNN-based SSL model by
assigning low- to high-resolution DOA labels from the lower
to upper layers of the DNN. Second, we propose a curricu-
lum learning (CL) [16] method for training the DNN-based SSL
model, which gradually increases the angular selectivity of the
soft DOA labels as the training progresses. Lastly, DS and CL
are applied simultaneously to utilize the merits of both meth-
ods. Consequently, we expect the model to gradually learn to
solve from easier to harder SSL problems during the training,
particularly when adverse acoustic conditions are encountered.
The effectiveness of the proposed method is validated on both
synthetic and recorded datasets comprising single or multiple
speakers, achieving significant improvements over the conven-
tional SSL approaches.

2. DNN-based SSL Framework
2.1. Input feature representation

Suppose N speech sources are captured by a C-channel micro-
phone array in a noisy and reverberant room environment. In
the short-time Fourier transform (STFT) domain, the signal at
the l-th frame can be expressed as follows:

Yc(l, f) =
∑

s∈nl

Xc,s(l, f) + Vc(l, f), (1)

where c and f denote the microphone channel and frequency
bin index, respectively, and nl is the set of active speakers in
the l-th frame. Also, X and V represent the speech and noise
components, respectively.

For the input feature of the DNN, we use the instantaneous
relative transfer function (iRTF) [17] to encode the spatial fea-
ture. Indeed, iRTF, Zc(l, f), for the c-th microphone channel,
is calculated as follows:

Zc(l, f) =
Yc(l, f)

Yc∗(l, f)
. (2)

where the subscript c∗ denotes the reference microphone chan-
nel. The real and imaginary components of the iRTFs of all
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Figure 1: CRNN that estimates K = 3 outputs. Each output
layer is supervised with different SS to provide various proper-
ties of correlation and gradually decrease the ambiguity of the
output of the deepest layer.

channels, except for the reference channel, are stacked to form
an input feature. The size of the input feature is 2(C − 1)× F ,
where F denotes the number of frequency bins.

2.2. Model structure

Similar to [11, 18], we adopt the convolutional recurrent neural
network (CRNN) architecture as the DNN-based SSL model.
The CRNN consists of a shared module and a mapping mod-
ule. The shared module comprises four causal convolution
modules (CCMs) and three uni-directional gated recurrent units
(GRUs) [19]. Each CCM performs causal 2D convolution with
a 3×3 kernel, batch normalization (BN), exponential linear unit
(ELU), and max pooling layer. The output of the last CCM is
flattened and fed into the GRUs. Then, the output of the last
GRU is introduced to the mapping module, which comprises
K skip-connection modules (SCMs) and an output layer. An
SCM performs 1D pointwise convolution, BN, and ELU, and
the output layer comprises a 1D pointwise convolution followed
by a sigmoid function to produce the posterior probabilities of
DOAs. The output layer has 360

r
units for DOA classification,

where r denotes the angular resolution.

2.3. Target DOA labels

2.3.1. Hard label

Perhaps the most intuitive form of the target DOA labels for
training a DNN-based SSL model is a hard n-hot vector, where
1’s are assigned to the indices of the source locations [5]. By
employing n-hot labels, the task becomes a typical multi-class
classification problem, in which only the indices of the target di-
rections according to a predetermined angular resolution r are
of interest. However, as r increases, the DNN may suffer from
dealing with SSL problems because the hard labels do not con-
sider the relation between adjacent DOAs and assign 0’s to the
directions spatially close to the target direction.

2.3.2. Soft label

To address the aforementioned problems of hard labels, a soft
labeling scheme was proposed in [6] and used in recent stud-
ies [7–9]. Specifically, to consider the correlations between the
target and its adjacent directions, the target direction is assigned
1 and its adjacent directions are assigned the probabilistic val-
ues representing the source existence instead of 0’s. For this rea-
son, the soft DOA labels defined as such are sometimes referred
to as spatial spectrum (SS) [6]. To produce the soft DOA labels
or the target SS, we adopt the Gaussian-like function described

in [6] as well as the spatial gain function described in [20].

g(l, ξc, σc) =





max
ϕ′∈Φl

{eκ(ξc,σc)(cos(d(ϕ,ϕ′))−1)} if|Φl| > 0

0 otherwise
,

(3)
d(θ, θ′) = abs(θ − θ′), (4)

κ(ξ̄, σ̄) =
ln(ξ̄)

cos(σ̄)− 1
, (5)

where g(l, ξc, σc) denotes the function for formulating tar-
get SS, d(θ, θ′) measures the absolute angular difference, and
κ(ξ̄, σ̄) denotes the spatial gain function; ξc and σc are cutoff
value and angle for soft label; and Φl denotes the set of azimuth
angles of active speakers at l-th frame, with | · | representing the
cardinality of the set. Following [20], ξc was set as 1√

2
. Ex-

amples of the SS set according to the different values of σc are
illustrated on the rightmost panel of Fig. 1. Eq. (3) and [6, Eq.
(3)] both assign similar value when the parameters are adjusted,
respectively, but as Eq. (3) can assign ξc at σc, Eq. (3) makes
synergy when adjusting the parameters to apply CL and DS de-
scribed in latter section because assigned value could be known
directly.

2.4. Iterative max-peak selection from predicted SS

DOAs are predicted by decoding the estimated SS. One widely
using decoding method is max-peak selection [21], which was
adopted by several studies [8, 11, 22]. When the number of ac-
tive speakers |nl| is known, the indices for the highest peaks
of the SS are considered as the estimated DOAs. To obtain the
indices of the peaks, we adopt the iterative max-peak selection
method described in [8], while neglecting the neighborhoods
of the selected peaks within a predetermined angular distance
margin, L. This can prevent the decoding algorithm from miss-
ing the active speakers whose posterior probabilities are repre-
sented by relatively small peak amplitudes. The iteration ends
when the number of peaks reaches |nl|.

3. Proposed Method
3.1. CL for DNN-based SSL

CL was first proposed by [16] to train a DNN effectively by in-
creasing the difficulty of the training progressively. In the case
of utilizing SS to train the DNN, SS with a wider σc can be re-
garded as an easier target because relatively larger values are as-
signed at the neighboring angles. A large σc indicates that there
is a greater correlation between the target DOA and the neigh-
boring directions, so the DNNs can consider such relations. On
the other hand, a large σc can lead to ambiguity in the max-
peak search for determining the DOAs from the estimated SSs.
Because the output is not ideal, a few local-maximum points
exist in the surroundings of the target directions, so it is difficult
to distinguish the peak points from SS. In this case, SS with a
smaller σc is more suitable for the max-peak search. Therefore,
to take advantage of a large σc, but to minimize the drawbacks,
we propose to use CL to define SS whose σc progressively de-
creases from a large to a small value.

At the beginning of training the DNN, we initialize σc with
σinit, which would be the largest value during entire training
procedure. When each epoch ends, we subtract a specific pos-
itive value from the previous σc and fix the value when σc

reaches σend. We anticipate that DNNs can take advantage of
both easier and correlation-instructing targets at the beginning
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of the training procedure and precisely DOA indicating target
at the end. This method can create a synergistic effect when
combined with DS.

3.2. DS for DNN-based SSL

DS was proposed to prevent the gradient vanishing problem by
providing multiple targets for the outputs of several DNN lay-
ers [13]. In [15], DS was utilized using multi-resolution targets
to produce low-resolution images at the lower layer and high-
resolution images at the upper layer. Inspired by [15], we apply
DS by supervising the DNN-based SSL model with SSs formed
with different σc depending on the depth of the layers. This in-
duces the model to produce an unambiguous SS suitable for the
max-peak detection decoding method. In addition, the shared
layers of a DNN can learn the general characteristics via multi-
ple targets with different properties.

Among the K outputs of the CRNN, some outputs that are
selected in advance form a set of outputs O that are used for
training and inference, where ok denotes an element in O and is
the output of the k-th output layer. Among the predictions in O,
the SS formulated with a relatively larger σc is given as the tar-
get for the output of the lower output layer. For the outputs from
the upper layers, SSs produced with a comparatively smaller σc

are provided. Each loss of each output layer is summed and
backpropagated to update the parameters of the CRNN. In the
inference stage, the predictions in O are independently utilized
to estimate the DOAs. Moreover, CL and DS can be combined
by different σinit, σend and different decreasing schedulers for
each layer, respectively.

To summarize the CL and DS methods, an easier target that
indicates more correlation about adjacent directions is used to
train the DNN at the beginning of training and the output of the
lower layer. As training progresses, and for the output of the
upper layer, a distinctive target is given to form more accurate
SSs to distinguish the DOAs.

4. Experimental Setup
4.1. Dataset

In our experiments, we trained CRNN with a synthetic dataset
and evaluated using both a synthetic develop dataset (SD) and
a real-recorded LOCATA challenge dataset (RD) [23]. We used
the NAO robot head array of [23], which was configured of 12
microphones. For the training set, we used the LibriSpeech cor-
pus [24] for clean utterances, noise from the Microsoft Scalable
Noisy Speech Dataset (MS-SNSD) [25], and randomly gener-
ated white noise. To generate the training samples, we followed
the parameters of the room as [10]. The size of the room and
the position of the array were randomly selected, but the posi-
tion was at least 0.3 m far from the closest wall. In addition, the
array was rotated freely on the xy-plane. We then selected N ut-
terances from different speakers. We selected azimuths and ele-
vations for the position of the speakers, but azimuth distance be-
tween adjacent speakers was at least 10◦. In addition, one noise
source was randomly selected from MS-SNSD. We then gener-
ated N + 1 room impulse responses (RIRs) for utterances and
noise. To generate RIRs, we used gpuRIR toolkit [26]. From
the beginning to the attenuation level of 12 dB, image source
method [27] was used. Then, from the attenuation level of 12
dB to 40 dB, diffuse reverberation model was used to generate
RIRs for diffuse sound. All utterances and noise source were
convolved with each RIR and added together based on a ran-
domly chosen signal-to-noise ratio (SNR) within the range we

Table 1: Synthetic dataset generation parameters

Parameter Interval Unit
SNR 5 – 30 dB

SNR between Utterances -5 – 5 dB
RT60 0.2 – 1.3 s

Room Size 3×3×2.5 – 10×8×6 m3

Absorption Weights of the Room 0.5 – 1.0 -
Height of the Array 0.3 – 1.2 m

Speaker-to-Array Distance 0.3 – 2.5 m
Azimuth 0 – 360 ◦

Elevation 30 – 100 ◦

set, including white noise. To prevent overfitting and provide
diversity in the data, training samples were generated on-the-
fly.

For the SD, we used the LibriSpeech corpus test set, MS-
SNSD test set, and white noise. The SD was generated with the
same parameters as the training set, but with different speech
and noise sources. Table 1 shows the parameters randomly
sampled from uniform distribution within the interval for train-
ing dataset generation: SNR, SNR between utterances, RT60,
room size, absorption weights of the room, height of the array,
speaker-to-array distance, azimuth, and elevation candidates.
For RD, we used LOCATA tasks 1 and 2, which were recorded
in the real room environment with 0.55 s of RT60 and all speak-
ers were static. From the task 2, which is configured for utter-
ances of multiple speakers, we used the data that the maximum
number of active speakers was 2 or less in the utterance.

4.2. Training specifications

The length of each sample of the training dataset and SD was
4 s. r was set as 1◦ and L was set as 10◦ considering the min-
imum azimuth distance between adjacent speakers. The sam-
pling rate of the data was 16 kHz and the window length and
hop length for STFT were 16 ms and 8 ms, respectively. We
used the WebRTC voice activity detector [28] to obtain Φl and
ϕl in the l-th frame. The model was trained for 50 epochs, with
a batch size of 16. Cross-entropy (CE) loss was used for the
loss function. We used the Adam optimizer [29] with a gradient
clipped between ±5. The learning rate started at 1e-3, and when
the validation loss did not decrease, the learning rate decreased
by the factor of 0.9. We evaluated the model that documented
the lowest cross-validation loss during the training.

4.3. Evaluation metrics

The SSL performance was evaluated using two metrics: mean
absolute error (MAE) and accuracy (ACC). MAE was measured
as the angular distance between the oracle and the estimated az-
imuth angles using Eq. (4) with the unit of ◦. For ACC, a frame
was considered to be correctly classified if the angular distance
between the oracle and the estimated azimuth angles was less
than a predefined threshold with a unit of %. The threshold was
set as 10◦ in our experiments. Both MAE and ACC were com-
puted for every frame, and the performances were compared
based on the average of the results.

5. Results and Analysis
5.1. Performance with soft label

Table 2 shows the evaluation results of MUSIC [3], ResNet [9]
and CRNNs trained on the soft labelled target with various σc.
We modified ResNet with causal CNNs and trained it using SS.
CRNNs were configured with K = 1 and the σc of the SS
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Figure 2: Oracle SSs and estimates of real data, where speakers
were located on 85 ◦ and 131 ◦. From (a) to (e), they are the out-
puts of the each model: (a), CRNN with σc = 0; (b), CRNN1;
(c), CRNN+CL1; (d), CRNN+DSd; and (e), CRNN+DSCL. For
(d) and (e), each represents the output of k = 1, 2, 3, from the
top. (f) is the oracle target with σc = 16, 6, 2.5.

Table 2: Performance of baselines and CRNNs trained on vari-
ous σc

Method σc
Synthetic LOCATA

MAE ACC MAE ACC
MUSIC [3] - 39.68 52.81 14.35 81.45

ResNet [9] 0 29.80 71.76 15.84 80.13
2.5 25.85 75.93 8.74 87.21

CRNN

0 10.36 90.57 8.83 86.98
1 9.53 91.20 4.66 93.27

2.5 8.40 92.50 4.06 93.79
6 9.92 92.22 5.26 92.39

16 18.56 87.20 6.14 89.92

was fixed during the entire training period. Compared to MU-
SIC and ResNet, we identified that CRNN was suitable for low-
latency, causal systems compared to other methods. The SS
with σc = 0 represents the hard label, and the results show
that SSs with σc > 0 were better targets for both ResNet and
CRNN. Additionally, as shown in Fig. 2, the peaks of (a) are
not distinguishable compared to (b). However, excessive σc

made the performance worse on SD, because as we mentioned
in previous sections, large σc induced ambiguous property to
the model. Therefore, appropriate σc, like 2.5, should be uti-
lized for the parameter of soft labelled target.

5.2. Performance with CL and DS

Table 3 compares the results of the CRNNs trained with
five different methods: CRNN trained with static σc using
the k-th output (CRNNk), CRNN with only CL using the
k-th output (CRNN+CLk), CRNN with only DS and equal
σc (CRNN+DSe), CRNN with only DS and different σc

(CRNN+DSd), and CRNN with DSCL (CRNN+DSCL). Com-
paring CRNN1, CRNN2 and CRNN3, which were trained only
with the output of the first, second, and third output layers with
static σc = 2.5, the model with deeper layers showed similar
MAE and ACC on SD, but worse MAE and ACC on RD.

For CRNN+CLk, the models with different k values were
trained independently. σc was first set to σinit and decreased
until epoch 25; then, σc was fixed with σend. CRNN+CLk

showed an improved performance on SD compared with
CRNNk, and k = 2 showed the best results among them. As
shown in Fig. 2(c), training with CL could produce a clearer

Table 3: Performance of CRNN trained with CL, DS and both

Method σinit σend k
Synthetic LOCATA

MAE ACC MAE ACC

CRNNk

2.5 2.5 1 8.40 92.50 4.06 93.79
2.5 2.5 2 8.46 92.55 4.67 93.40
2.5 2.5 3 8.36 92.50 4.91 92.68

+CLk

16 2.5 1 7.29 93.80 3.39 94.24
16 2.5 2 6.69 94.27 3.22 94.26
16 2.5 3 7.08 94.05 3.87 93.84

+DSe
2.5 2.5 1 7.12 94.03 4.45 92.17
2.5 2.5 2 7.09 94.05 4.49 92.28
2.5 2.5 3 7.15 94.00 4.55 92.16

+DSd
16 16 1 14.21 90.89 4.34 92.99
6 6 2 7.72 94.29 3.60 93.92

2.5 2.5 3 6.33 94.95 3.53 93.73

+DSCL
16 2.5 1 6.93 94.18 2.96 94.88
6 2.5 2 6.79 94.35 2.94 94.73

2.5 2.5 3 6.82 94.33 2.97 94.70

output for max-peak detection.
Also, CRNN+DSe and CRNN+DSd were configured with

K = 3 and k = 1, 2, 3, and σc values were unchanged during
the training period. The losses computed between the outputs
and targets were weighted, summed, and used to train the mod-
els. Until epoch 25, the ratio between the losses of each layer
was 1.1:1.0:0.9, after then the ratio changed to 1:1:1. The per-
formance of CRNN+DSe was superior to that of CRNNk on
SD, but not on RD. In the case of CRNN+DSd, the results from
first and second layers showed worse performances in terms of
both MAE and ACC. However, the output from k = 3 exhib-
ited the best performance on SD in our experiments. As can
be seen in Fig. 2(d), the outputs of lower layers were ambigu-
ous for max-peak detection because of a large σc; therefore, the
performance decreased.

Next, CRNN+DSCL was configured with the same K as
that of CRNN+DSd. In addition, σinit on each layer was dif-
ferent, but σend was the same, 2.5, and the manner of de-
creasing σc was the same as that of CRNN+CLk. The perfor-
mance on SD was slightly worse than that of CRNN+CLk and
CRNN+DSd, but the performance on RD was significantly im-
proved, and the best performance was recorded on both MAE
and ACC. Fig. 2(e) is the output of CRNN+DSCL and is the
clearest output among all the estimates.

6. Conclusion
In this study, we proposed a new training method for DOA es-
timating DNNs adopting DS, CL and both by adjusting the pa-
rameters of the soft label. The CL changed the parameters of
the target SS to progressively produce clearer outputs, and the
DS provided diverse target SSs to the output layers of different
hierarchies. This scheme allowed DNNs to be trained more ef-
fectively with various properties that each target provides with-
out increasing the model size and computation power. Our ex-
perimental results demonstrated that the proposed method was
effective for SSL tasks, especially in real situations. In future
work, we can apply the proposed method to moving speaker
localization and SSL for an unknown number of speakers.
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