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Abstract
Speech enhancement employing a dual-path transformer (DPT)
with a dilated DenseNet-based encoder and decoder has shown
state-of-the-art performance. By applying attention in both time
and frequency paths, the DPT learns the long-term dependency
of speech and the relationship between frequency components.
However, the batch processing of the DPT, which performs at-
tention on all past and future frames, makes it impractical for
real-time applications. To satisfy the real-time requirement, we
propose a streaming dual-path transformer (stDPT) with zero
look-ahead structure. In the training phase, we apply masking
techniques to control the context length, and in the inference
phase, caching methods are utilized to preserve sequential in-
formation. Extensive experiments have been conducted to show
the performance based on different context lengths, and the re-
sults verify that the proposed method outperforms the current
state-of-the-art speech enhancement models based on real-time
processing.
Index Terms: speech enhancement, dual-path transformer,
streaming transformer, masked multi-head self-attention

1. Introduction
The goal of speech enhancement is to improve the quality and
intelligibility of speech degraded by background noise. It is
widely used in speech processing applications such as voice
communication, speech recognition and speaker recognition to
ensure robust performance. In the past decade, a major break-
through in speech enhancement was achieved by incorporating
powerful deep learning models and has become the prevailing
trend in the field [1].

Recently, the transformer has demonstrated success in
processing sequential information through multi-head self-
attention (MHSA) without relying on recurrent structures [2, 3].
By applying the attention mechanism to sequences and cap-
turing their dependencies, the transformer has achieved better
performance than the recurrent neural networks (RNNs) based
attention models in the machine translation task. Inspired by
the effective sequential modeling of the transformer, many al-
gorithms have been proposed since its first appearance. Fur-
thermore, the dual-path transformer (DPT), which incorporates
attention in both time and frequency directions while utilizing
convolutional neural networks (CNNs) for the encoder and de-
coder, has shown better performance in estimating clean speech
compared to dual-path RNN models [4, 5, 6].

The DPT-based speech enhancement consists of time-
frequency domain methods and time domain methods. In time-
frequency domain methods, a noisy input waveform is trans-
formed into a spectrum, and the clean magnitude or complex
values are predicted to incorporate phase information [7, 8, 9].
On the other hand, time domain methods directly obtain the
clean waveform from a noisy waveform in an end-to-end man-

ner [10, 11, 12]. Both methods include an encoder, consecutive
DPTs, and a decoder. The encoder expands the channel dimen-
sion using a 1 by 1 convolution and learns the feature repre-
sentation through densely connected dilated convolution blocks
[13, 14]. The decoder is the inverse of the encoder and estimates
the enhanced waveform.

Although attention mechanisms are highly capable of learn-
ing the long-term dependencies of speech signals and the corre-
lation between frequency components, they are not practical for
real-time processing because the transformer requires access to
the entire sequences to compute attention. Speech enhancement
algorithms based on MHSA have attempted to address this limi-
tation by applying causal attention masks or restricting the time
context [15, 16]. However, these approaches are still insufficient
for real-time operation as they do not provide a methodology
for streaming scenarios. Several attempts have been made to
develop streaming frameworks for the transformer, but their use
cases were mainly limited to transducers in speech recognition
[17, 18]. Motivated by the transformer-XL [19], the authors in
[20] designed a chunk-wise streaming transducer that utilizes
memory. Streaming techniques employing chunk-wise atten-
tion masks and history windows enable low look-ahead latency
by segmenting the input into small chunks and combining them
with the previous chunk to limit the context length [20, 21, 22].

The current batch processing models for speech enhance-
ment based on either transformer or conformer architectures,
which have demonstrated promising performance, have a criti-
cal limitation: they cannot be applied to real-time applications
[7, 8, 23]. To satisfy the real-time constraint, we propose a
streaming dual-path transformer (stDPT) for speech enhance-
ment. To the best of our knowledge, this is the first work that en-
ables the DPT to operate in a streaming manner. Our proposed
approach, utilizing caching techniques, not only alleviates the
drawback of streaming systems that cannot fully utilize sequen-
tial information but also enables zero look-ahead streaming. We
conducted ablation experiments to examine the impact of con-
text length on the performance of streaming processing. The
experimental results show that the proposed approach achieves
better results than the current state-of-the-art real-time or causal
speech enhancement models, while also having a significantly
smaller model size.

2. DPT-based speech enhancement
2.1. Dilated DenseNet-based encoder and decoder

A dilated convolution can effectively increase the receptive field
as the layers become deeper, enabling it to capture long-term in-
formation and temporal dependencies in speech signals [24]. In
addition, a DenseNet not only effectively utilizes the flow of
feature information but also mitigates the problem of vanishing
gradient by incorporating the concatenated outputs of all previ-
ous layers as input to the current convolutional layer [14]. The
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Figure 1: Different types of attention masks to control the context length. The current frame is depicted in red, while the receptive field
applied to the corresponding mask is represented in blue.

dilated DenseNet, which combines the advantages of aforemen-
tioned two models, is commonly employed as both an encoder
and a decoder in transformer-based speech enhancement [7].

2.2. DPT blocks

The original transformer comprises both encoders and de-
coders, but in many regression tasks, only the encoder parts are
adopted. The main idea of transformer is the MHSA, which
allows learning of continuous sequence information without re-
lying on recurrent networks. This attention mechanism involves
queries, keys, and values, and it can be organized into multiple
heads to capture various aspects, similar to the kernels used in
CNNs. The DPT is effective in learning both local and global
contextual information from long-term speech sequences where
two transformers are connected to perform different types of at-
tention in time and frequency paths. These models have been
applied to various speech enhancement tasks and have recently
showed outstanding performance [7, 8].

3. Proposed stDPT
In this section, we propose a streaming structure for real-time
speech enhancement, which includes an encoder, DPT blocks,
and decoders, as illustrated in Figure 2.

3.1. Encoder

The spectrum magnitude, real and imaginary components of
the noisy speech are denoted as Ym, Yr , Yi ∈ RT×F×1 re-
spectively, where T and F indicate time and frequency dimen-
sions. Ym, Yr , and Yi are concatenated and used as an input
Yin ∈ RT×F×3 to the encoder. The encoder consists of a 1× 1
convolutional layer that expands the channel dimension and di-
lated dense blocks comprising four densely connected dilated
convolutional layers with the dilation rate of {1, 2, 4, 8}. The
encoder output Yenc ∈ RT×F×C is extracted to retrieve in-
termediate representation of the noisy speech, where C is the
channel dimension.

3.2. Masked attention for stDPT

During the training of the transformer, a masking method is
adopted to control the extent of attention applied among se-
quences. The masked MHSA is defined as follows:

Qh = ZWQ
h , Kh = ZWK

h , Vh = ZWV
h , h ∈ [1 , H] (1)

head attentionh = softmax

(
QhK

T
h√

d
+M

)
Vh (2)

Mi,j =

{
0, if attention sequence
−∞, else

(3)

where Z ∈ Rl×d are input sequences of each transformer block
with length l and dimension d, and Qh, Kh, Vh ∈ Rl×d/H ,
H are the mapped queries, keys, values of h-th head, and the
number of head, respectively. WQ

h , WK
h , WV

h ∈ Rd×d/H are
linear transformation matrices, and M indicates the attention
mask which determines the range of sequences to be involved
for attention. Masking is specifically applied to the transformers
in the time path, as the frequency path is not relevant to causal-
ity. Figure 1 shows different types of attention masks. In each
section of the figure, the left side represents the attention mask,
while the right side provides a schematic representation of the
receptive field applied to the corresponding mask.

A general transformer performs attention to all input se-
quences without any masking, as depicted in Figure 1(a). To
achieve causal attention, the mask shown in Figure 1(b) is uti-
lized, which only allows attention to the past input sequences.
We apply the attention mask shown in Figure 1(c) when train-
ing the model. By applying a limited context length S with zero
look-ahead masking, a streaming system has been achieved dur-
ing the inference phase. If there is a small room for additional
look-ahead frames, the masking shown in Figure 1(d) is applied.
However, using a fixed look-ahead mask in Figure 1(d) for all
layers of the transformers has a drawback because the number
of future frames increases linearly with the increasing number
of transformer layers. Therefore, a dual-mask method has been
applied to maintain a fixed size of look-ahead frames. Specif-
ically, the first layer of the transformer utilizes the look-ahead
mask to incorporate limited future context, while the remain-
ing layers adopt look-behind masking to prevent the expansion
of the future receptive field. A DPT block consists of two se-
quentially connected transformers that perform attention in both
time and frequency paths. By stacking these blocks N times,
the model captures both time and frequency dependencies in an
alternating manner. The overall model architecture and training
flow are depicted in Figure 2(a).

3.3. Mask and complex decoders

Phase information is a significant factor that improves the per-
formance of speech enhancement [25]. Inspired by the pre-
vious works in [8] and [26], two decoders have been con-
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Figure 2: The overall diagram of the proposed approach.

structed to predict the magnitude mask and complex compo-
nents. Both decoders employ the dilated DenseNet, similar to
the one in the encoder, and are followed by a 1 × 1 convolu-
tion to reduce the channel dimension. The masked magnitude
X̂m ∈ RT×F×1 is obtained by element-wise multiplication of
the mask decoder output with the input noisy magnitude Ym.
The complex decoder estimates the real and imaginary compo-
nents (X̂ ′

r, X̂
′
i) ∈ RT×F×2, and further enhances the complex

parts obtained by the mask decoder as follows:

X̂r = X̂m cosYp + X̂ ′
r, X̂i = X̂m sinYp + X̂ ′

i (4)

where Yp is the phase of the input noisy spectrum, and (X̂r, X̂i)
are final complex spectrum estimated by the model.

3.4. Loss function

In order to estimate both the magnitude and phase information
of speech, the loss function is composed of a linear combination
of the magnitude loss Lmag , complex loss Lcomp, and wave-
form loss Lwav as follows:

Lmag = E
[
|Xm − X̂m|

2
]

Lcomp = E
[
|Xr − X̂r|

2
]
+ E

[
|Xi − X̂i|

2
]

Lwav = E [|x− x̂|]

(5)

where Xm, Xr , Xi, x and x̂ refer to the clean target magnitude,
real part, imaginary part, waveform and enhanced waveform,
respectively. The total training loss is defined as follows:

Ltotal = α1Lmag + α2Lcomp + α3Lwav (6)

where α1, α2, and α3 are the weights of the corresponding
losses, which are set to 0.5, 0.2 and 0.3 respectively.

3.5. Streaming inference methods

The trained model, which uses masked MHSA to limit the con-
text length as described in Section 3.2, enables the DPT to op-
erate as a streaming system during inference. Our proposed
streaming inference method is illustrated in Figure 2(b). In
the encoder and decoders, the causal DenseNet block is applied

only for the current frame, considering limited future informa-
tion. As layers are stacked, the convolution results are cached
to concatenate the outputs of the previous layers consecutively.
At the DPT, the proposed masking-based training technique is
used only for the time path, meaning there is no caching for
the frequency path transformer. In the frequency path, attention
among the frequency components is obtained within the current
frame. The query in the current frame is then applied to the
cached previous keys and values, and the MHSA is obtained as
follows:

head attentionh,t = softmax

(
Qh,tK

T
h,t−S:t√
d

)
Vh,t−S:t

(7)

where t is the current time index. In comparison to Equation
(2), the steaming method truncates the history sequences to the
context length S, which is the number of look-behind frames of
the mask applied during the training phase.

4. Experiments and ablation study
4.1. Dataset

We conducted experiments on the Voice Bank+DEMAND
dataset, which is widely used in speech enhancement research,
to evaluate the performance [27]. The dataset was selected from
the Voice Bank corpus [28] and consists of 11,572 utterances
from 28 speakers as the training set, and 872 utterances from
2 unseen speakers as the test set. In the training set, clean ut-
terances were artificially mixed with 10 different noise types (8
types from DEMAND [29] and 2 artificial types) at 0, 5, 10,
and 15 dB SNRs. In the test set, 5 unseen noise types were
mixed at 2.5, 7.5, 12.5, and 17.5 dB SNRs. All utterances were
down-sampled from 48 kHz to 16 kHz.

4.2. Experimental setup

The input frame is applied with a Hanning window of 25ms
(400-point FFT), and a hop size of 6.25ms (75% overlap). The
channel dimension C, which is extended by 1× 1 convolution,
is set to 64. Four DenseNets with a dilated rate of 2 are used for
the encoder and decoders. All convolutional layers are followed
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Table 1: The performance variation with the number of look-
behind frames (0-frame look-ahead). “← S” denotes the his-
tory context length.

#(← S) PESQ CSIG CBAK COVL SSNR
Full 3.126 4.503 3.776 3.891 10.691

Causal 3.046(97.5) 4.403(97.8) 3.683(97.5) 3.798(97.6) 9.918(92.8)
128 3.031(97.0) 4.402(97.8) 3.674(97.3) 3.789(97.4) 9.894(92.5)
96 2.965(94.9) 4.383(97.3) 3.637(96.3) 3.738(96.1) 9.823(91.9)
64 2.947(94.3) 4.356(96.7) 3.644(96.5) 3.715(95.5) 10.039(93.9)
32 2.912(93.2) 4.360(96.8) 3.623(96.0) 3.697(95.0) 9.971(93.3)
16 2.908(93.0) 4.337(96.3) 3.620(95.9) 3.683(94.7) 9.951(93.1)

Table 2: The performance variation with the number of look-
ahead frames (32-frames look-behind). “→ S” denotes the
future context length.

#(→ S) PESQ CSIG CBAK COVL SSNR
0 2.912 4.360 3.623 3.697 9.971
1 2.919(100.2) 4.350(99.8) 3.625(100.1) 3.694(99.9) 9.986(100.1)
2 2.930(100.6) 4.372(100.3) 3.629(100.2) 3.714(100.5) 9.934(99.6)
4 2.981(102.4) 4.387(100.6) 3.676(101.5) 3.747(101.4) 10.270(103.0)
8 2.990(102.7) 4.390(100.7) 3.659(101.0) 3.756(101.6) 10.019(100.5)

16 2.998(102.9) 4.393(100.8) 3.671(101.3) 3.764(101.8) 10.072(101.0)
32 3.019(103.7) 4.405(101.0) 3.701(102.1) 3.780(102.2) 10.363(103.9)

by instance normalization and PReLU activation function [30].
The number of DPT blocks N is 4, and the number of heads
H is 4. Training is conducted using Adam optimization, and
gradient clipping is applied with L2-norm of 5 to avoid gradient
explosion. The learning rate starts at 0.008 and decreases expo-
nentially. The total number of training epochs is set to 100.

4.3. Evaluation metrics

We have selected metrics to evaluate the performance of en-
hanced speech in various aspects. Higher values indicate better
performance for all metrics. The objectives of each metric are
summarized as follows:
• PESQ: Perceptual evaluation of speech quality defined in the

ITU-T P.862.2 standard [31].
• SSNR: Segmental SNR, which is the average of the SNR per

frame for two speech signals.
• CSIG, CBAK, and COVL: Mean Opinion Score (MOS) pre-

diction of the signal distortion, the intrusiveness of back-
ground noise, and the overall effect, respectively [32].

4.4. Results and ablation analysis

We conducted extensive experiments to evaluate the perfor-
mance based on different context lengths, and the results were
analyzed to ensure that the performance of the proposed stDPT
is as expected. Table 1 shows the results of applying attention
only to history frames with zero look-ahead, where (·) repre-
sents the percentage degradation compared to the performance
of the batch processing method that performs attention on all
past and future frames. It is observed that with a smaller num-
ber of past frames, there is more degradation in terms of PESQ
and SSNR compared to MOS. When using 16 frames of history
masking, the MOS scores showed approximately 5% degrada-
tion compared to the batch processing results, while PESQ and
SSNR showed about 7% degradation in performance.

Table 2 compares the performance of increasing the look-

Table 3: Comparison with other state-of-the-art casual
and real-time speech enhancement models on the Voice
Bank+DEMAND dataset.

Model #para(M) PESQ
Noisy - 1.97
RNNoise [33] 0.06 2.29
PercepNet [34] 8 2.73
DCCRN [35] 3.7 2.68
DCCRN+ [36] 3.3 2.84
FSFusionNet [37] 3.1 2.905
stDPT (S=16) 1.14 2.908
stDPT (S=32) 1.14 2.912
stDPT (S=64) 1.14 2.947
stDPT (S=96) 1.14 2.965
stDPT (S=128) 1.14 3.031

ahead sequences from 1 to 32 while keeping the past mask-
ing fixed at 32, where (·) indicates the percentage of improve-
ment. The longer look-ahead frames yield slightly higher per-
formance in all metrics, but the improvement is not as signifi-
cant as expected. The reason for this is that in the transformer
blocks of the time path, the previous keys and values are al-
ready cached, allowing for the full utilization of history infor-
mation even as the transformer layers increase. However, in the
case of look-ahead, only the first layer utilizes future informa-
tion to prevent linearly growing receptive field. This leads to
the problem that the future information becomes more diluted
as the transformer is stacked, resulting in limited performance
improvement. Therefore, the proposed streaming structure is
more sensitive to past frames than future information. If we
can leverage sufficient past information, the stDPT can achieve
real-time speech enhancement with only processing time delay
and without significant performance degradation. In the case of
zero look-ahead, the total algorithmic latency (frame length +
frame shift) is 25 + 6.25 = 31.25ms.

To further validate the proposed method, we compared
the performance with other state-of-the-art real-time speech
enhancement techniques, including RNNoise [33], PercepNet
[34], DCCRN [35], DCCRN+ [36] and FSFusionNet [37].
These models are based on either dual-path RNNs or complex
convolutional layers. As shown in Table 3, the proposed method
outperforms the other models in terms of PESQ score. Across
all history context lengths from 16 to 128 with zero look-ahead,
the stDPT showed superior performance compared to the other
approaches. Note that, the model parameters are reduced by
approximately 3 times compared to existing models meaning
that the proposed model efficiently estimates clean speech with
a relatively smaller model size.

5. Conclusions
The DPTs have demonstrated promising performance by in-
corporating attention mechanisms in both time and frequency
paths. However, most of the existing models are based on batch
processing, which poses a significant limitation for real-time ap-
plications. To overcome this challenge, we proposed a stream-
ing approach to DPT in this paper. Our approach involves train-
ing DPTs using masking methods and conducting inference us-
ing caching techniques to limit the length of the past context
while enabling streaming with zero look-ahead. Experimen-
tal results showed that our method outperforms state-of-the-art
models in terms of real-time and causal speech enhancement
processing, while also achieving a much smaller model size.

827



6. References
[1] D. Wang and J. Chen, “Supervised speech separation based on

deep learning: An overview,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 26, no. 10, pp. 1702–
1726, 2018.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[3] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,”
AI Open, 2022.

[4] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path RNN: efficient long
sequence modeling for time-domain single-channel speech sepa-
ration,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020, pp. 46–50.

[5] X. Le, H. Chen, K. Chen, and J. Lu, “DPCRN: Dual-path convo-
lution recurrent network for single channel speech enhancement,”
in Proc. Interspeech 2021, pp. 821–825.

[6] C. Li, Y. Luo, C. Han, J. Li, T. Yoshioka, T. Zhou, M. Del-
croix, K. Kinoshita, C. Boeddeker, Y. Qian et al., “Dual-path RNN
for long recording speech separation,” in IEEE Spoken Language
Technology Workshop (SLT), 2021, pp. 865–872.

[7] F. Dang, H. Chen, and P. Zhang, “DPT-FSNet: Dual-path trans-
former based full-band and sub-band fusion network for speech
enhancement,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022, pp. 6857–6861.

[8] R. Cao, S. Abdulatif, and B. Yang, “CMGAN: Conformer-based
metric GAN for speech enhancement,” in Proc. Interspeech 2022,
pp. 936–940.

[9] D. de Oliveira, T. Peer, and T. Gerkmann, “Efficient transformer-
based speech enhancement using long frames and STFT magni-
tudes,” in Proc. Interspeech 2022, pp. 2948–2952.

[10] J. Chen, Q. Mao, and D. Liu, “Dual-path transformer network:
Direct context-aware modeling for end-to-end monaural speech
separation,” in Proc. Interspeech 2020, pp. 2642–2646.

[11] K. Wang, B. He, and W.-P. Zhu, “TSTNN: Two-stage transformer
based neural network for speech enhancement in the time do-
main,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2021, pp. 7098–7102.

[12] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong,
“Attention is all you need in speech separation,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 21–25.

[13] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” ICLR, 2016.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition
(CVPR), 2017, pp. 4700–4708.

[15] A. Nicolson and K. K. Paliwal, “Masked multi-head self-attention
for causal speech enhancement,” Speech Communication, vol.
125, pp. 80–96, 2020.

[16] M. Strake, A. Behlke, and T. Fingscheidt, “Self-attention with
restricted time context and resolution in DNN speech enhance-
ment,” in International Workshop on Acoustic Signal Enhance-
ment (IWAENC), 2022, pp. 1–5.

[17] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo, and
S. Kumar, “Transformer transducer: A streamable speech recog-
nition model with transformer encoders and rnn-t loss,” in Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 7829–7833.

[18] Z. Tian, J. Yi, Y. Bai, J. Tao, S. Zhang, and Z. Wen, “Synchronous
transformers for end-to-end speech recognition,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 7884–7888.

[19] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhut-
dinov, “Transformer-xl: Attentive language models beyond a
fixed-length context,” Annual Meeting of the Association for Com-
putational Linguistics (ACL), pp. 2978–2988, 2019.

[20] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “Developing real-
time streaming transformer transducer for speech recognition on
large-scale dataset,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2021, pp. 5904–
5908.

[21] V. Garg, W. Chang, S. Sigtia, S. Adya, P. Simha, P. Dighe, and
C. Dhir, “Streaming transformer for hardware efficient voice trig-
ger detection and false trigger mitigation,” in Proc. Interspeech
2021, pp. 4209–4213.

[22] O. O. Rudovic, A. Bindal, V. Garg, P. Simha, P. Dighe, and
S. Kajarekar, “Streaming on-device detection of device directed
speech from voice and touch-based invocation,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022, pp. 491–495.

[23] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” in Proc. Inter-
speech 2020, pp. 5036–5040.

[24] A. Pandey and D. Wang, “Densely connected neural network with
dilated convolutions for real-time speech enhancement in the time
domain,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020, pp. 6629–6633.
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