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Abstract
We create a multilingual speech synthesis system that can

generate speech with a native accent in any seen language while
retaining the characteristics of an individual’s voice. It is ex-
pensive to obtain bilingual training data for a speaker and the
lack of such data results in strong correlations that entangle
speaker, language, and accent, resulting in poor transfer capa-
bilities. To overcome this, we present RADMMM, a speech
synthesis model based on RADTTS with explicit control over
accent, language, speaker, and fine-grained F0 and energy fea-
tures. Our proposed model does not rely on bilingual training
data. We demonstrate an ability to control synthesized accent
for any speaker in an open-source dataset comprising of 7 lan-
guages, with one native speaker per language. Human subjec-
tive evaluation demonstrates that, when compared to controlled
baselines, our model better retains a speaker’s voice and target
accent, while synthesizing fluent speech in all target languages
and accents in our dataset.

1. Introduction
Recent progress in Text-To-Speech (TTS) has achieved human-
like quality in speech synthesis through mel-spectrogram [1, 2,
3, 4] and direct waveform [5, 6] prediction. Most models sup-
port speaker selection during inference by learning a speaker
embedding table [1, 2, 3] during training, while some support
zero-shot selection by generating a speaker conditioning vector
from a short audio sample [7]. However, most models support
only a single language. This work focuses on factorizing out
speaker and accent as controllable attributes, in order to synthe-
size speech for any desired combination of speaker, language
and accent present in the training dataset.

It is very expensive to obtain bilingual datasets because
most speakers are monolingual. Hence, speaker, language, and
accent attributes are highly correlated in most TTS datasets.
Training models with such entangled data can result in poor lan-
guage, accent, and speaker transferability. Most TTS systems
use different symbol sets for each language, sometimes even
separate encoders [8], severely limiting representational shar-
ing across languages. This aggravates speaker, language and
text entanglement, especially in datasets with very few speakers
per language. Approaches like [9] introduce an adversarial loss
to curb this dependence of text representations on a speaker,
but this can result in lower content quality. Other approaches
use a union of linguistic feature sets of all languages [10] to
simplify text processing for multi-language training. However,
these solutions don’t support code-switching situations where
words from multiple languages appear in mixed order in the
synthesis prompt.

Recently, there has been interest in factorizing out fine-
grained speech attributes [11, 12, 13] like F0 and energy. We

extend this fine-grained control by factorizing out accent and
speaker, with an ability to predict frame-level F0 and energy,
for a desired combination of accent, speaker and language.
We analyze and show the benefits this explicit conditioning on
fine-grained speech features brings to synthesized speech when
transferring a voice to other languages.

Our goal is to synthesize speech for a target speaker in
any language with a specified accent. Related methods include
YourTTS [14] and VallE-X [15], but these methods focus on
zero-shot multilingual voice conversion in the large data regime.
Although promising results are presented for a few language
combinations, the results in YourTTS indicate limited success
on transferring from languages with limited speakers (like Por-
tuguese as stated in [14]). Moreover, it uses a curriculum learn-
ing approach to extend the model to new languages, making
the training process cumbersome. Closest to our work is [9],
which describes a multilingual and multispeaker TTS model
trained on a proprietary high-quality dataset with approximately
100 English professional voice actors and a handful of Span-
ish and Mandarin voice actors. We depart from [9], use open
source datasets and focus on more challenging scenarios with
one speaker, or a couple, per language.

In this work, we (1) demonstrate effective scaling of single
language TTS to multiple languages using a shared alphabet
set and alignment learning framework [4, 16]; (2) introduce ex-
plicit accent conditioning to control the synthesized accent; (3)
propose and analyze several strategies to disentangle attributes
(speaker, accent, language and text) without relying on paral-
lel training data (multilingual speakers); and (4) explore fine-
grained control of speech attributes such as F0 and energy and
its effects on speaker timbre retention and accent quality.

2. Methodology
We build upon RADTTS [4, 13] as deterministic decoders tend
to produce oversmooth mels that require vocoder fine-tuning.
Our model synthesizes mels(X ∈ RCmel×F ) using encoded
text(Φ ∈ RCtxt×T ), accent(A ∈ RDaccent ) and speaker(S ∈
RDspeaker ) as conditioning variables, with optional condition-
ing on fundamental frequency(F0 ∈ R1×F ) and energy(ξ ∈
R1×F ), where F is the number of mel frames, T is the text
length, and energy is the per-frame mel energy average. We re-
fer to our conditioning as accent instead of language because
we consider language to be implicit in the phoneme sequence.
The information captured by the accent embedding should ex-
plain the fine-grained differences between how phonemes are
pronounced in different languages.

We propose the following modifications:

2.1. Shared text token set
Our goal is to train a single model with the ability to synthe-
size a target language with desired accent for any speaker in the
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dataset. We represent text tokens with the International Pho-
netic Alphabet (IPA) to enforce a phoneme-based shared tex-
tual representation. A shared alphabet across languages reduces
the dependence of text on speaker identity, especially in low-
resource settings (e.g. 1 speaker per language) and supports
code-switching.
2.2. Scalable Alignment Learning
We utilize the alignment learning framework in [4, 16], to learn
speech-text alignments Λ ∈ RT×F without external dependen-
cies. A shared alphabet set simplifies this since alignments are
learnt on a single token set instead of distinct sets. However, the
same token can be spoken in different ways due to differences
in speaker’s accent, which can make alignments brittle. To curb
this multi-modality, we learn alignments between (text, accent)
and mel-spectograms using accent A as a conditioning variable.
2.3. Disentangling Factors
We focus on non-parallel data with a speaker speaking only one
language, which typically has text Φ, accent A and speaker S
entangled. We evaluate strategies to disentangle these attributes:
Speaker-adversarial loss In TTS datasets, speakers typically
read different text and have different prosody. Hence, there can
be entanglement between speaker S, text Φ and prosody. Fol-
lowing [9], we employ domain adversarial training to disentan-
gle S and Φ by using a gradient reversal layer. We use a speaker
classification loss, and backpropagate classifier’s negative gra-
dients through the text encoder and token embeddings.

Ladv =
N∑

i=1

P (si|ϕi; θspkclassifier) (1)

Data Augmentation Disentangling accent and speaker is chal-
lenging, as a speaker typically has a specific way of pronounc-
ing words, causing a strong association between speaker and ac-
cent. Hence, not addressing this issue in non-parallel data can
lead to entangled representations because a speaker’s language
and accent can be trivially learned from the dataset. Since our
goal is to synthesize speech for a speaker in a target language
with a desired accent, disentangling speaker S and accent A
is essential, otherwise either speaker identity is not preserved in
the target language or the generated speech retains the speaker’s
accent from the source language. To overcome this problem and
promote disentanglement between speaker and accent, we use
data augmentations like formant, F0, and duration scaling. For
a given speech sample xi with speaker identity si and accent
ai, we apply a fixed transformation t ∈ {1, 2, ...τ} to construct
a transformed speech sample xt

i and assign speaker identity as
si+t·Nspeakers and accent as original accent ai, where τ is the
number of augmentations. This creates samples with variations
in speaker identity with fixed accent helping decorrelate them.
Embedding Regularization Ideally, the information captured
by the speaker and accent embeddings should be uncorrelated.
To promote disentanglement between accent and speaker em-
beddings, we aim to decorrelate the following variables: (1)
random variables in accent embeddings; (2) random variables
in speaker embeddings; (3) random variables in speaker and
accent embeddings from each other. While truly decorrelat-
ing the information is difficult, we can promote something
close by using the constraints from VICReg [17]. We denote
EA ∈ RDa×Na , ES ∈ RDs×Ns as the accent and speaker
embedding tables respectively. Column vector ej ∈ E denotes
the j’th embedding in either table. Let µE and Cov(E) be the
means and covariance matrices. By using VICReg, we con-
strain standard deviations to be at least γ and suppress the off-
diagonal elements of the covariance matrix (γ = 1, ϵ = 1e−4):

Lvar =
1

D

∑

i=j

max
(
0, γ −

√
Cov(E)i,j + ϵ

)
(2)

Lcovar =
∑

i ̸=j

Cov(E)2i,j (3)

Next, we attempt to decorrelate accent and speaker vari-
ables from each other by minimizing the cross-correlation ma-
trix from batch statistics. Let ẼA and ẼS be the sampled col-
umn matrices of accent and speaker embedding vectors sam-
pled within a batch of size B. We compute the batch cross
-correlation matrix RAS as follows (µEA and µES computed
from embedding table):

RAS =
1

B − 1
(ẼA − µEA)(Ẽ

S − µES )
T (4)

Lxcorr =
1

DaDs

∑

i,j

(RAS
i,j )

2 (5)

2.4. Accent conditioned speech synthesis
We introduce an extra conditioning variable for accent A to
RADTTS [4] to allow for accent controllable speech synthe-
sis. We call this model RADTTS-ML, a multilingual version of
RADTTS. The following equation describes the model:

Pradtts(X,Λ) = Pmel(X|Φ,Λ, A, S)Pdur(Λ|Φ, A, S) (6)
2.5. Fine-grained frame-level control of speech attributes
Fine-grained control of speech attributes like F0 and energy E
can provide high-quality controllable speech synthesis [13]. We
believe conditioning on such attributes can help improve accent
and language transfer. During training, we condition our mel
decoder on ground truth frame-level F0 and energy. Although
we believe attribute predictors can be generative models, how-
ever due to the preference of deterministic models over gener-
ative models[13] by human evaluators, we train deterministic
attribute predictors to predict phoneme durations Λ, F0, and
energy E conditioned on speaker S, encoded text Φ, and accent
A. We standardize F0 using the speaker’s F0 mean and stan-
dard deviation to remove speaker-dependent information. This
allows us to predict speech attributes for any speaker, accent,
and language and control mel synthesis with such features. We
refer to this model as RADMMM:

Pradmmm(X) = Pmel(X|Φ,Λh, A, S, Fh
0 , Eh) (7)

3. Experiments
We conduct our experiments1 on an open source dataset2 with
a sampling rate of 16kHz. It contains 7 different languages
(American English, Spanish, German, French, Hindi, Brazilian
Portuguese, and South American Spanish). This dataset emu-
lates low-resource scenarios with only 1 speaker per accent with
strong correlation between speaker, accent, and language. We
use HiFiGAN vocoders trained individually on selected speak-
ers in the evaluation set. We focus on the task of transferring
the voice of 7 speakers in the dataset to the other 6 language
and accent settings. Herein we refer to RADTTS-ML as RT
and RADMMM as RM for brevity.
3.1. Ablation of Disentanglement Strategies
We evaluate the effects of disentanglement strategies on the
transfer task by measuring speaker timbre retention using the
cosine similarity (Cosine Sim) of synthesized samples to source
speaker’s reference speaker embeddings obtained from the
speaker recognition model Titanet [18]. We measure character
error rate (CER) with transcripts obtained from Conformer [19]
models trained for each language. We use the following defi-
nition of Character Error Rate(CER), defined by the following

1Samples available at https://bit.ly/radmmm-samples
2More details available at https://research.nvidia.com/labs/adlr/projects/radmmm/.
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Figure 1: Comparing speaker cosine similarity and CER of considered disentanglement strategies for every accent.

equation. CER can be larger than 100 when the number of in-
sertions is larger than the number of correct characters.

CER =
substitutions+ deletions+ insertions

substitutions+ deletions+ correct
× 100

(8)
Table 1 and Figure 1 demonstrate overall and accent

grouped effects of various disentanglement strategies. The
RT baseline uses the shared text token set, accent-conditioned
alignment learning, and no additional constraints to disentangle
speaker, text, and accent. The RM baseline uses this setup with
F0 and energy conditioning.
Table 1: Ablation results comparing disentanglement strategies
using Cosine Sim and CER defined in 3.1. Fields are N/A for
cases where experiment is not applicable or non informative.

RADTTS-ML RADMMM
Disentanglement Strategy Cosine Sim(↑) CER(↓) Cosine Sim(↑) CER(↓)

Baseline (B) 0.306± 0.017 17.7 0.343± 0.013 5.1
(B) + normalized F0 pred N/A N/A 0.394± 0.014 5.3
(B) + Ladv 0.302± 0.017 39.9 N/A N/A
(B) + augmentation 0.385± 0.014 44.3 0.217± 0.013 41.7
(B) + Lvar , Lcovar 0.403± 0.014 13.7 N/A N/A
(B) + Lvar , Lcovar , Lxcorr 0.422± 0.015 12.2 0.419± 0.015 5.5
(B) + Lvar , Lcovar , Lxcorr , Ladv N/A N/A 0.416± 0.016 7.2

Speaker Adversarial Loss (Ladv) We observe that the addition
of Ladv loss to RT and RM does not affect speaker retention
when synthesizing the speaker for a target language. However,
we observe a drop in character error rate. We believe the gra-
dients from the speaker classifier tend to remove speaker and
accent information from encoded text Φ, which affects the en-
coded text representation leading to worse pronunciation.
Data Augmentation We use Pratt [20] to apply six augmenta-
tions with a scaling factor randomly chosen between a specific
range: formant scaling down (×[0.875−1.0]) and up (×[1.0−
1.25]), scaling F0 down (×[0.9 − 1.0]) and up (×[1.0 − 1.1]),
and scaling durations to make samples faster(×[0.9− 1.0])) or
slower(×[1.0−1.1]). We augment the dataset with transformed
audio defining a new speaker identifier, but retaining the orig-
inal accent. In RT, this leads to a significant boost in speaker
retention. We believe that creating more speakers per accent
enhances disentanglement of accent and speaker. However, in
RM, where F0 is predicted and the model is explicitly condi-
tioned on augmented F0, we observe a significant drop content
quality (higher CER) with augmentations, likely due to condi-
tioning on noisy augmented features.
Embedding Regularization We conduct three ablations with
regularization: one that adds variance (Lvar) and covariance
(Lcovar) constraints to the baseline, and two more involving all

three constraints (Lvar , Lcovar , Lxcorr). We observe an im-
provement in speaker similarity with the best speaker retention
with all three constraints in both RT and RM. Moreover, we ob-
serve similar CER to the baselines suggesting similar pronunci-
ation quality.

Our final models include regularization constraints, but we
don’t use augmentation and Ladv due to worse pronunciation
quality and limited success on speaker timbre retention.
3.2. Comparing proposed models with existing methods
We compare our final RT and RM with the Tacotron 2-based
model described in [9], call it T2, on the transfer task. We repro-
duced the model to the best of our ability, noting that training on
our data was unstable, possibly due to data quality, and that re-
sults may not be representative of the original implementation.
We tune denoising parameters [21] to reduce audio artifacts
from T2 over-smooth generated mels [3, 22]. We attempted
to implement YourTTS [14] but ran into issues reproducing the
results on our dataset and hence we don’t directly compare to it.
Speaker timbre retention Table 2 shows the speaker cosine
similarity of our proposed models and T2. We observe that both
RT and RM perform similarly in terms of speaker retention and
achieve better speaker timbre retention than T2. However, our
subjective human evaluation below shows that RM samples are
overall better than RT in timbre preservation and pronunciation.
Table 2: Speaker timbre retention using Cosine Sim (Sec 3.1)

Model Cosine Similarity

RADTTS-ML (RT) 0.4186± 0.0154
RADMMM (RM) 0.4197± 0.0149
Tacotron2 (T2) 0.145± 0.0119

3.3. Subjective human evaluation
We conducted an internal study with native speakers to eval-
uate accent quality and speaker timbre retention. Raters were
pre-screened with a hearing test based on sinusoid counting.
Since MOS is not suited for finer differences, we use compar-
ative mean opinion scores (CMOS) with a 5 point scale (-2 to
2) as the evaluation metric. Given a reference sample and pairs
of synthesized samples from different models, the raters use the
5 point scale to indicate which sample, if any, they believe is
more similar, in terms of accent or speaker timbre, to the target
language pronunciation or speaker timbre in reference audio.
Accent evaluation: We conduct accent evaluation with na-
tive speakers of every language. Fig 2 shows the preference
scores of native speakers with 95% confidence intervals in each
language for model pairs under consideration. Positive mean
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Table 3: Role assignment ablation comparing 1 speaker per accent against 3 speakers per accent.
German Speaker (Berndt Ungerer) English Speaker (LJ Speech) Hindi Speaker (Indic TTS) French Speaker (Nadine Eckert)

Evaluation Setup Cosine Sim(↑) CER(↓) PER(↓) Cosine Sim(↑) CER(↓) PER(↓) Cosine Sim(↑) CER(↓) PER(↓) Cosine Sim(↑) CER(↓) PER(↓)

RM Resynthesis (1 spk per accent) 0.8309± 0.0362 0.047± 0.033 − 0.8218± 0.0584 0.036± 0.042 − 0.7809± 0.0583 0.153± 0.027 − 0.7118± 0.0866 0.068± 0.028 −
RM Resynthesis (3 spk per accent) 0.8294± 0.0321 0.024± 0.010 − 0.8183± 0.0485 0.030± 0.044 − 0.7658± 0.0526 0.124± 0.035 − 0.8183± 0.0485 0.062± 0.040 −
RM Cross-Lingual (1 spk per accent) 0.4312± 0.0375 0.133± 0.033 0.19± 0.04 0.5022± 0.0404 0.132± 0.028 0.17± 0.04 0.4012± 0.0254 0.071± 0.035 0.09± 0.02 0.4644± 0.0412 0.1532± 0.0413 0.14± 0.04
RM Cross-Lingual (3 spk per accent) 0.6611± 0.0263 0.109± 0.027 0.18± 0.04 0.5546± 0.0274 0.103± 0.026 0.14± 0.03 0.4772± 0.0342 0.043± 0.021 0.07± 0.02 0.4663± 0.0424 0.0970± 0.0263 0.12± 0.04
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Figure 2: Accent Similarity CMOS for model pairs.

scores imply that the top model was preferred over the bottom
model within the pair. Given limited access to native speakers,
we show results for only 5 languages. We observe that there is
no strong preference between RT final and its baseline in terms
of accent quality. We find similar results for RM final and its
baseline, suggesting that accent and pronunciation are not com-
promised by our suggested disentanglement strategies. To eval-
uate controllable accent, we synthesize samples from our best
model (RM final) for every speaker in languages other than the
speaker’s native language. Samples using non-native language
and accent are referred to as RM final, and samples with the
new language but native accent are referred to as RM accented.
Raters preferred samples using the target accent (RM final) over
the source speaker’s accent (RM accented), indicating the effec-
tiveness of accent transfer. Finally, RM final is preferred over
T2 in terms of accent pronunciation.
Speaker timbre evaluation: Table 4 shows CMOS scores with
95% confidence intervals. First, we observe that in both RT and
RM, the final models with disentanglement strategies applied
are preferred over baseline models in terms of speaker timbre
retention. RM accented synthesis (RM accented) is rated as
having similar speaker timbre as native accent synthesis with
RM (RM final), indicating that changing accent doesn’t change
speaker timbre in RM, thus showcasing the disentangled nature
of accent and speaker. Finally, RM final is preferred over T2
in terms of speaker timbre retention on transferring speaker’s
voice to target language.
Effects of control with F0 and E: Comparing RM final with
RT final, we see that RM is preferred for most languages ex-
cept German, indicating that explicit conditioning on F0 and
energy results in better pronunciation and accent. Moreover,
as illustrated in Table 1, RM final achieves a better CER than
RT final. Table 4 demonstrates that explicit conditioning on F0

and energy in RM results in much better speaker timbre reten-
tion compared to RT. RM results in the best speaker retention,
accent quality and pronunciation among our models.

Table 4: CMOS for speaker timbre similarity.

Model Pair CMOS

RT Final vs RT Base 0.300± 0.200
RM Final vs RM Base 0.750± 0.189
RM Final vs RT Final 0.733± 0.184
RM Final vs RM Accented 0.025± 0.199
RM Final vs T2 1.283± 0.144

3.4. Speaker and Accent Role Assignment
In the one speaker per accent data setup described in our exper-
iments, the role assignment of speaker and accent to respective
embeddings can be ambiguous. The embedding regularization

and cross-correlation minimization constraints attempt to decor-
relate the variables but doesn’t guarantee independence and role
assignment. Whereas speaker timbre is a factor that globally
modulates speech, accent determines how each phoneme (text
tokens) will be pronounced and is a factor that locally modu-
lates speech. In our formulation, speaker embeddings are con-
catenated to the input of the decoder and, hence, are only able
to globally bias the output. Unlike speaker embeddings, ac-
cent embeddings are concatenated to text inputs and then passed
to a bi-directional LSTM encoder, hence being able to locally
bias the output. These design choices help with the role assign-
ment of the speaker and accent to their respective embeddings.
This role assignment ambiguity does not arise in more than one
speakers per accent (or augmentation setup with a few addi-
tional augmented speakers per accent) setup because the num-
ber of speakers and accents are different.

In order to showcase the role assignment in RADMMM, we
conduct experiments3 comparing 1 speaker per accent (where
role assignment can be ambiguous) against 3 speakers per ac-
cent (without any role assignment ambiguity) in 4-language set-
ting. We evaluate both monolingual (speaker speaking their
own language) and cross-lingual (speaker speaking 3 languages
other than their own language). Table 3 compares the re-
sults based on the content, accent and speaker identity using
CER, Phoneme Error Rate(PER) and cosine similarity of Ti-
tanet speaker embeddings respectively. We observe that speaker
identity for monolingual synthesis is about the same in both set-
tings. Although the speaker identity retention in cross-lingual
synthesis is better with 3 speakers than 1 speaker, both are quite
close suggesting that speaker is retained even in 1 speaker set-
ting which indicates speaker and accent roles are well assigned.
We observe a better content quality with 3 speakers (indicated
by lower CER) in both monolingual and cross-lingual synthe-
sis which could be due to larger quantity of data available to
model per language. Since accent relates to the pronunciation
of text, spoken phonemes are a proxy to measure accent quality.
We use an ASR model trained to predict phonemes from speech
and compute the phoneme error rate(PER). We observe a lower
PER with 3 speakers but with overlapping confidence intervals.
This indicates accent quality doesn’t change much indicating
the adequate role assignment in 1 speaker per accent setting.

4. Conclusion
We present a multilingual, multiaccented and multispeaker TTS
model based on RADTTS with novel modifications. We pro-
pose and explore several disentanglement strategies resulting in
a model that improves speaker, accent and text disentanglement,
allowing for synthesis of a speaker with closer to native fluency
in a desired language without multilingual speakers. Internal
ablation studies indicate that explicitly conditioning on fine-
grained features (F0 and E) results in better speaker retention
and pronunciation according to human evaluators. Our model
provides an ability to predict such fine-grained features for any
desired combination of speaker, accent and language and user
studies show that under limited data constraints, it improves
pronunciation in novel languages. Future work involves scal-
ing the model to large-resource conditions with more speakers.

3Samples available at https://bit.ly/radmmm-role-assignment
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