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Abstract
Despite major advancements in Automatic Speech Recogni-
tion (ASR), the state-of-the-art ASR systems struggle to deal
with impaired speech even with high-resource languages. In
Arabic, this challenge gets amplified, with added complexi-
ties in collecting data from dysarthric speakers. In this paper,
we aim to improve the performance of Arabic dysarthric au-
tomatic speech recognition through a multi-stage augmentation
approach. To this effect, we first propose a signal-based ap-
proach to generate dysarthric Arabic speech from healthy Ara-
bic speech by modifying its speed and tempo. We also pro-
pose a second stage Parallel Wave Generative (PWG) adver-
sarial model that is trained on an English dysarthric dataset
to capture language-independant dysarthric speech patterns and
further augment the signal-adjusted speech samples. Further-
more, we propose a fine-tuning and text-correction strategies
for Arabic Conformer at different dysarthric speech severity
levels. Our fine-tuned Conformer achieved 18% Word Error
Rate (WER) and 17.2% Character Error Rate (CER) on syn-
thetically generated dysarthric speech from the Arabic common
voice speech dataset. This shows significant WER improve-
ment of 81.8% compared to the baseline model trained solely
on healthy data. We perform further validation on real English
dysarthric speech showing a WER improvement of 124% com-
pared to the baseline trained only on healthy English LJSpeech
dataset.
Index Terms: speech recognition, generative models, Arabic,
dysarthria, low-resource language

1. Introduction
Great progress has been achieved in Automatic Speech Recog-
nition (ASR) systems, with remarkable performance reaching
human parity [1]. As ASR systems become more ubiquitous in
daily life, individuals with impaired speech will face difficul-
ties. However, limited work has been carried out on ASR for
impaired speech recognition tasks, especially Arabic dysarthric
speech. Dysarthria is a speech disorder caused by trauma to
areas of the brain concerned with motor aspects of speech re-
sulting in effortful, sluggish, slurred, or prosodically disordered
speaking. It is often unfeasible to collect large amounts of
data from dysarthric speakers due to many reasons such as low
compliance and fatigue during recordings [2]. This leads to
data scarcity for training and testing models, even with high-
resource languages.

Recently, techniques were developed to enhance the qual-
ity of automatic dysarthric speech recognition on English lan-
guage [3, 4, 5, 6, 7, 8, 9, 10, 11]. Data augmentation using Text
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To Speech (TTS) was proposed by [12], where a Deep Neural
Network (DNN) was trained on dysarthric speech then used to
produce synthesized dysarthric speech to enhance the ASR per-
formance with augmented data.[13] trained an ASR using Hid-
den Markov Models (HMM) which synthesizes the produced
text from the ASR into speech with the patient’s original tone
through TTS model. Mimicking English dysarthric speech fea-
tures at the signal level, [14] investigated data augmentation
on healthy speech using temporal and speed perturbations to
simulate English dysarthric speech. [15] applied a vocal tract
length perturbation on existing dysarthric speech samples by
adjusting both the speed and tempo. [16] improved the WER
by employing a two-stage data augmentation technique that in-
volves static and dynamic augmentation of dysarthric speech
data, where an end-to-end ASR model was trained to evaluate
the data augmentation scheme. Other approaches involved ad-
versarial methods such as, [17] that developed a Deep Convo-
lutional Generative Adversarial Network (DCGAN) to simulate
dysarthric speech through learning a generative task to mimic
the fine-grained temporal features of dysarthric speech. [18]
employed time-delayed neural networks and Long-Short Term
Memory Networks (LSTMs) on the dysarthric speech dataset,
Universal Access Speech [19], after training on two out-of-
domain broadcast news and switchboard datasets. Furthermore,
Meta-Learning was employed by [20] to create better base mod-
els pre-trained on large amounts of healthy speech. The meta-
update of the base model repeatedly simulates adaptation to dif-
ferent dysarthric speakers in such a manner that optimizes the
base model towards better generalization.

In this work, we aim to enhance the performance of Ara-
bic dysarthric ASR in terms of WER using a multi-stage data
augmentation method to address the lack of Arabic dysarthric
speech datasets. Firstly, inspired by [14], we employ a signal-
based approach to mimic dysarthric speech patterns and gener-
ate dysarthric speech from healthy input. Secondly, we develop
an adversarial-based augmentation method using a Parallel
Wave Generative (PWG) [21] model to complement the signal-
based approach and capture language independent dysarthric
speech patterns from English, where dysarthric speech data
is available. We use the combination of augmented outputs
from the signal-based and adversarial approaches to fine-tune
a Conformer model to recognise Arabic dysarthric speech. Fi-
nally, we use the observed character-level confusion to build a
weighted text-correction module that further improves the Con-
former’s performance.

To the best of our knowledge, this is the first study that
aims to enhance Arabic dysarthric ASR by generating Arabic
dysarthric speech and fine-tuning PWG model to capture lan-
guage independent dysarthric speech patterns. The rest of this
paper is organised as follows: Section 2 describes the signal-
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Figure 1: Our proposed signal-based and adversarial approach used to generate Arabic dysarthric speech and fine-tune a Conformer
model as well as the text correction module.

based and adversarial approach to dysarthric speech augmen-
tation along with the Conformer model and the targeted text
correction approach. Section 3 then describes the experimental
settings along with the datasets used for training and augmenta-
tion. We then move on to Section 4 that showcases our results.
Finally, Section 5 discusses the limitations of this work then
Section 6 concludes and provides insights into possible future
work. Additionally, the code1. implementation of this work
along with the full generated dataset will be made available.

2. Methodology
Firstly, we develop a signal-based perturbation approach, where
we alter the speed and tempo of available healthy speech to
generate dysarthric Arabic speech which we use to improve the
performance of dysarthric Arabic ASR. Secondly, we hypothe-
size that dysarthric speech patterns have language-independent
characteristics based on similarities between speech intelligi-
bility tests across languages [22]. Therefore, we train an adver-
sarial model to further mimic dysarthric Arabic speech features
from the English language, where dysarthric speech datasets are
available. Finally, we employ a text correction module sup-
ported by observed character-level confusion to enhance the
ASR prediction performance. Figure 1 illustrates the main com-
ponents of our approach and the rest of this section describes
each of these components in detail.

2.1. Signal-based perturbation

Speed perturbation. We alter the time domain signal by re-
sampling the input signal in the frequency domain by a pertur-
bation factor R1. This method changes the audio duration and
the spectral shape [23]. Given speech signal x(t), perturbation
factor R1 is used to calculate output y(t) along the time axis as:

y(t) = x(R1t) (1)

In the frequency domain, signal modification is equivalent to
the following:

X(f)→ 1

R1
X(

1

R1
f) (2)

1Code and Samples: https://github.com/massabaali7/AR Dysarthric

where X(f) and 1
R1

X( 1
R1

f) represent the Fourier transform
of x(t) and y(t) respectively.

Tempo perturbation. We use the waveform overlap-add
(WSOLA) algorithm [24] to alter the duration of time domain
signal by factor R2, while ensuring that the pitch and spectral of
the signal do not change. The time-domain input speech signal
x(t) is decomposed into analysis blocks x̄m(r) that are equally
spaced along the time axis by analysis hopsize. Given a pertur-
bation factor R2, the synthesis block ȳm(r) is relocated by Hs

(synthesis hypothesis) based on the following equation:

Hs = R2 ×HR2 (3)

An iterative process is then followed to update the analysis
blocks to ensure maximal similarity between perturbed output
y(t) and x(t).

2.2. Adversarial Augmentation using Parallel Wave GAN

Based on similarities between speech intelligibility tests across
languages [22], our hypothesis is that dysarthric speech features
are language independent, we leverage an existing dysarthric
English data where we trained a PWG on dysarthric English
speech to generate Arabic dysarthric speech from the signal-
based dysarthric mel-spectrogram. As shown in Figure 1, the
model consists of a generator (G) and discriminator (D). A
WaveNet-based model is used as the generator, which is fed the
mel-spectrogram of dysarthric speech (Auxiliary feature) along
with random noise (z). The generator G tries to learn a distri-
bution of realistic waveforms and generate both real and fake
data to deceive the discriminator D, which is in turn trying to
recognize whether its input is real or fake examples. This leads
G to output speech with more realistic dysarthric features. This
model is then trained using the following adversarial loss func-
tion L:

L(G,D) = Ez∼N(0,I)[(1−D(G(z)))2] (4)

The discriminator D on the other hand is trained to classify
whether the mel-spectrogram input is real or fake using the fol-
lowing criterion:

L(G,D) = Ex∼p[(1−D(x))2] + Ez∼N(0,I)[D(G(z))2]
(5)
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where x is the target waveform and p is the target waveform
distribution, which is that of the signal-based dysarthric speech.

2.3. Conformer for Dysarthric Speech Recognition

The data generated by signal-based perturbation and adversarial
augmentation is then used to train a Conformer model [25] for
automatic dysarthric speech recognition. The Conformer model
comprises of a Conformer encoder and Transformer decoder,
where the encoder is a multi-blocked architecture. Each block
is stacked by a position-wise feed-forward network (FFN) mod-
ule, a multihead self-attention (MHSA) module, a convolution
module, and another FFN at the end of the block. The incor-
poration of positional embeddings to MHSA further improves
the generalization of the model on variable lengths of input se-
quences. The details of training the Conformer are provided in
Algorithm 1.

2.4. Text Correction

To correct errors caused by imprecise speech articulation in
dysarthric speech, and to enhance the Conformer prediction,
we propose an approach to utilise the character-level confusion
from the Conformer model to create a text correction module.
We employ a weighted Jaccard distance [26], where characters
that are more likely to get mixed up in dysarthric speech would
result in smaller distance. As such, the Jaccard distance dJ be-
tween a predicted word wp and a ground truth word wg is given
by:

dJ(wp, wg) = 1−
∑

i min(cp, cg)∑
i max(cp, cg)

(6)

where cp and cg are characters belonging to wp and wg

respectively. Using a dictionary of words collected from
Arabic Wikipedia [27], we pick a word from the dictio-
nary wd, where dJ(wp, wd) is the smallest distance in
{dJ(wp, w1), dJ(wp, w2), . . . , dJ(wp, wn)}, where n is the
total number of words in the dictionary.

3. Experimental Setup
3.1. Datasets

Due to data collection complexities and considering the low-
resource nature of the language, there are no Arabic dysarthric
speech datasets available. Therefore, we use four datasets in
our proposed approach; two healthy Arabic datasets (Common
Voice [28] and MGB-2 [29]), one dysarthric English dataset
(Torgo [30]), and one healthy English dataset (LJspeech [31]).
Firstly, we use an 8-hour subset, split equally between female
and male speakers, of the Common Voice healthy Arabic speech
dataset [28] to generate synthetic dysarthric Arabic samples
through signal-based perturbation. We resample this dataset to
16KHz to ensure consistency with MGB-2. In a similar manner,
we use a 4-hour subset from the LJspeech dataset to syntheti-
cally generate 16 hours of dysarthric English speech for valida-
tion. Secondly, we use a 20-hour subset of the MGB-2 healthy
Arabic speech corpus [29] to train a Conformer model for Ara-
bic ASR. Our MGB-2 subset is divided into 18 training hours,
1 hour for development, and 1 hour for testing.

We utilize Torgo [30], which is an English dysarthric speech
dataset, to familiarize our adversarial generator model with
dysarthric speech characteristics beyond speed and tempo. We
hypothesize that these characteristics are language independent
based on similarities between speech intelligibility tests across
languages [22]. Torgo contains a total of 23 hours of English

Algorithm 1 Training Arabic Dysarthric ASR Conformer
Require: Load pre-trained PWG model generator

PG and Conformer C
healthy Arabic sample xA(t) ∈ X

yA ← sample ground truth
x̂A(t)← PertubateSignal(xA(t))
x′
A(t)← PG(x̂A(t))

ŷA ← C(x̂A(t))
ỹA ← C(x′

A(t))
Loss1 ← LCTC(ŷA(t), yA)
Backpropagation
Loss2 ← LCTC(ỹA(t), yA)
Backpropagation

function PERTUBATESIGNAL(x(t))
R1, R2 ← assign values
x̂(t)← x(R1t)
x̂(t)←WSOLA(x̂(t))
return x̂

end function

speech along with transcripts from 8 speakers (5 Male and 3
Female) with Cerebral Palsy (CP) or Amyotrophic Lateral Scle-
rosis (ALS). Additionally, it contains speech from 7 speakers (4
males, 3 females) from a non-dysarthric control group. In this
work, we only use the first cohort of the Torgo dataset with
dysarthric speech. A test subset of 4 speakers, 2 male and 2
female, from the Torgo dataset is also employed independently
to validate the effectiveness of the signal-based perturbation ap-
proach.

3.2. Experiments

There are three main steps that comprise our proposed approach
namely; Signal-based perturbation, Adversarial training, and
Conformer ASR training.

Signal-based perturbation. Signal-based augmentation is
the first step used to generate dysarthric Arabic speech from the
Common Voice dataset of healthy Arabic speech. Inspired by
[14], the values for R1 and R2 in equations (2) and (3) respec-
tively, were selected based on the target severity level of the
dysarthric speech. However, we carried out experimental mod-
ifications to R1 and R2 adapting them to Arabic speech, which
are detailed in Table 2. We generate a total of 28k synthetic
dysarthric Arabic utterances at different severity levels between
S1 and S4 from 14k healthy Arabic utterances from the Com-
mon Voice dataset.

Adversarial training. We train two PWG models on sub-
sets of the Torgo English dysarthric dataset. Each model is
trained on either a female or male split of the dataset to ensure
the generator’s ability to output better gender-specific wave-
forms. We use a total of 3090 utterances split into 2042 and
1048 utterances for the male and female subsets respectively.
We train both models by reducing the adversarial loss in equa-
tion (4) for 400k steps with a learning rate of 0.0001. A sched-
uler was used to reduce the learning rate by a factor of 0.5 every
200k steps. The male and female generators for the two PWGs
are then used to augment the output of the signal perturbed sam-
ples from the Common Voice dataset. As such, we generate a
total of 56k utterances starting from the 28k signal perturbed
samples at various severity levels.

Conformer ASR training. We train a Conformer model
using ESPNet tooklit [25] on an 18-hour subset of the MGB-2
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Table 1: WER(%) comparison among different levels of our fine-tuned
(Signal-based, and combined (Adversarial+Signal based)) Conformers
as well our text-correction module with the baseline Conformer model
on the Common Voice female, male and combined sets.

Split Baseline Sig. Sig.+Adv. Sig.+Adv.+
Text Corr.

Female 88.7 8.7 8.5 8
Male 104 23.1 22 20.5
Combined 99.8 20.2 19.7 18

Arabic healthy speech dataset. We use a set of 5k Byte-Pair En-
coding (BPE) tokens generated by the SentencePiece tokenizer
[32]. The architecture of the Conformer model has 12 Con-
former blocks in the encoder and 6 transformer blocks in the
decoder. Each block has an output dimension of 512 and a ker-
nel size of 31. The encoder and decoder both have 8 attention
heads with 2048 feed-forward unit dimension. We use a max
trainable epoch of 30 with a Noam [33] learning rate scheduler
set to 25k warmup steps with a learning rate of 0.0015. Finally,
we split the 56k utterances we got from the PWG model into
32k training, 12k validation, and 12k for testing. The training
set is used to fine-tune our Conformer model for a further 30
epochs. All experiments were run using NVIDIA A100 GPUs.

4. Results and Analysis
We validate the effectiveness of our approach in improving
dysarthric speech recognition on real dysarthric English data,
followed by synthetically generated Arabic speech. Firstly, we
use real dysarthric English speech from the Torgo dataset [30]
to assess the performance of the Conformer model [25] for En-
glish dysarthric speech recognition. We observe that fine-tuning
the Conformer model using 16 hours of synthetically generated
dysarthric speech from the LJSpeech dataset leads to a WER
improvement of 124% on the Torgo dataset. This is in compar-
ison with the WER acheived using a baseline Conformer model
pre-trained solely on healthy English speech from the same
LJSpeech dataset. Secondly, we assess the ASR performance at
different dysarthric speech severity levels using a signal-based
perturbed Arabic test set of 3k utterances sampled from the to-
tal 14k utterances in the Common Voice dataset. We consider
a Conformer model trained on MGB-2 Arabic healthy speech
dataset as the baseline model. In Table 1, we compare its perfor-
mance with that of Conformer models fine-tuned on synthetic
dysarthric speech generated from the Common Voice dataset
using our signal-based, and combined (signal and adversarial
based) approaches. To improve the performance of the ASR
and achieve better WER we trained the model by combining the
dataset generated by the signal-based and the adversarial-based.
Then we applied the text correction module as a post-processing
step to further enhance the WER. Our approach showed sig-
nificant performance gain with a WER improvement of 81.8%
compared with the baseline. This gain also manifests with both
male and female voices as shown in the performance on the two
subsets. This performance gain demonstrates the effectivness
of our augmentation approach in boosting their performance of
Arabic dysarthic ASR.

Table 2 demonstrates our approach’s ability in dealing with
different dysarthric speech severities. We notice a pattern of in-
creasing WER as the severity level increases, which validates
our choice of values for R1 and R2 in equations (2) and (3).
This conforms with results previously achieved by [14] on En-
glish dysarthric speech. Moreover, we observe better perfor-

Table 2: Breakdown of the Conformer’s performance on various sever-
ities after fine-tuning on signal-based augmented data.

Severity Perturbation WER (%)
R1 R2 Female Male Comb.

S1 1.2 0.8 26.6 28.4 17.3
S2 1.4 0.8 26.9 28.8 17.8
S3 1.8 0.4 34.2 42.4 23.6
S4 2 0.4 35.3 47.0 26.8

All Severities - - 28 34.4 20.2

Table 3: CER(%) comparison among different levels of our fine-tuned
(Signal-based, and combined (Adversarial+Signal based)) Conformers
as well our text-correction module with the baseline Conformer. The
columns “sub.”, “ins.”, and “del.” represent the number of substitution,
insertion, and deletion errors, respectively.

Approach Sub. Ins. Del. CER [%]
Baseline 58.0 18.0 23.2 99.2
Signal 13.6 2.2 4.7 20.4
Signal+Adv. 13.5 1.5 4.2 19.2
Signal+Adv.+Text Corr. 11.5 1.5 4.2 17.2

mance on the female subset likely due to better quality samples
on the female subset compared the male one in Common Voice
dataset. We further verify this argument using MOSNet [34]
which shows better MOS for the female subset. This hypothe-
sis is further observed in Table 2, where the difference of WER
values between female and male subsets starts small in S1 and
increases as the severity level increases to S4.

Finally, we observe a high substitution rate for the Charac-
ter Error, which is then significantly reduced using our augmen-
tation steps. We can also observe that the addition of the text
correction module further reduces this substitution rate. This
shows that our proposed method is capable of dealing with im-
precise articulation to lower the substitution rate and improve
the overall CER.

5. Limitations
Considering the unique complexities of dysarthric speech
recognition, the signal-based part of our approach focuses on
the speed and tempo variations. However, other variations con-
tribute to those complexities such as variable recording condi-
tions, uncontrolled body movements, and unbalanced data sam-
ples across speakers and diseases. That being said, the Paral-
lel Wave GAN would be able to reconstruct further Dysarthric
speech variations if introduced to the dataset through the signal-
based component.

6. Conclusion
This work proposes a novel end-to-end approach to enhance
the performance of Arabic dysarthric speech recognition by
augmenting Arabic dysarthric speech. Our proposed method
combines signal-based and adversarial approaches to gener-
ate dysarthric Arabic speech based on healthy Arabic and
dysarthric English speech datasets. These techniques are then
employed to fine-tune state-of-the-art Conformer models to bet-
ter recognise Arabic dysarthric speech. Using our approach,
we were able to achieve 18% WER on the modified Common
Voice dataset with a WER improvement of 81.8% over the Con-
former baseline performance. In the future, we plan to recon-
struct healthy speech from dysarthric speech to enable better
accessibility. We also aim to apply our proposed approach on
other low-resource languages.
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