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Abstract

The computational cost for training neural anti-spoofing
models has rapidly increased due to larger network architec-
tures. Several dataset-pruning metrics have been proposed to
increase the training efficiency of these models. However, these
metrics require example labels and an initial training step to
compute example scores which is computationally intensive.
We propose a novel self-supervised pruning metric for efficient
dataset pruning in neural anti-spoofing models. Our method
identifies important examples and prunes the dataset in an ef-
ficient, self-supervised manner using the clustered embedding
representation of audios. We demonstrate that our method ex-
ceeds the performance of four other pruning metrics on the
ASVSpoof 2019 dataset across two anti-spoofing models while
being 91% computationally more efficient. We also find differ-
ences in the distribution of certain attacks, which helps explain
the better performance of self-supervised pruning over other
metrics.

Index Terms: Anti-spoofing, fake audio detection, self-
supervised, data pruning, automatic speaker verification,
ASVspoof.

1. Introduction

Speech synthesis and voice conversion (VC) algorithms have
improved rapidly in recent years, allowing for the generation
of high-fidelity, natural-sounding audio. Although these algo-
rithms enable important applications within human-computer
interaction and assistive technologies [1], they allow the cre-
ation of fake audio, potentially leading to identity theft, spread
of misinformation, and defeating Automatic Speaker Verifica-
tion (ASV) systems. ASV systems aim to ascertain whether a
particular utterance belongs to the claimed speaker. Thus voice-
conversion algorithms can degrade the reliability of ASV sys-
tems considerably [2].

Numerous research efforts have been made under the
ASVSpoof community to address this challenge to develop anti-
spoofing systems that can reliably distinguish between synthetic
and bonafide audio. Neural anti-spoofing models have shown
encouraging performance in detecting spoofed audio from var-
ious attacks. Recent models can directly operate on raw speech
and identify the spoofing artifacts effectively. However, train-
ing these models is a resource-intensive process, requiring a
significant amount of compute, which also prevents their us-
age in resource-constrained environments (e.g., cheaper GPUs
and on-device computing). This has motivated the develop-
ment of light-weight anti-spoofing systems with limited pa-
rameters [3] and knowledge-driven models that utilize micro-
features [1, 4]. Another recent work proposes a dataset-pruning
method for efficient spoofed audio detection [5], which identi-

fies a subset of examples important for generalization through
an example-scoring metric. This subset is suitable for training
the anti-spoofing models in resource-constrained environments.
Although this approach is effective at significantly reducing the
training data requirements, it requires example labels before-
hand and needs an initial step to compute example scores for
the complete training set, which is computationally intensive.

To address these limitations, we propose a novel self-
supervised dataset pruning method for anti-spoofing models, in-
spired by the recent success of self-supervised data pruning in
vision tasks [6]. Our method identifies important examples in
an efficient self-supervised manner without requiring any initial
training to compute example scores. We first obtain the embed-
ding representation of audios in the ASVspoof dataset through
the wav2vec2 model and cluster them using k-means algo-
rithm. We then construct a data subset by identifying the im-
portant examples based on their distance from the cluster cen-
ters and pruning the prototypical examples. We demonstrate
that our method outperforms several other scoring metrics on
the ASVSpoof dataset across two anti-spoofing models.

1.1. Our contributions

¢ To our knowledge, this is the first approach that presents a
self-supervised dataset pruning method for efficient training
of anti-spoofing models.

* We demonstrate that our method outperforms multiple exist-
ing dataset pruning metrics (EL2N [7], forgetting score [8],
forgetting norm [5] and random pruning) across two models
(AASIST-L [3] and RawNet2 [9]) on the ASVSpoof 2019
dataset [2], in addition to being 91% computationally more
efficient than other metrics.

¢ To explain the qualitative differences between pruning met-
rics, we analyze the pruned subsets and find differences in the
relative position and distribution of certain attacks through t-
SNE plots.

2. Related Work
2.1. Dataset pruning

Dataset pruning has recently emerged as a promising tool for
enabling efficient training of deep neural networks (DNNs)
[7, 6]. Existing methods leverage different pruning metrics for
identifying informative training examples, which include for-
getting score [8], EL2N score, gradient norm score [7], forget-
ting norm [5], RHO-loss [10] and others [11, 12, 13, 14, 15,
16, 17, 18, 19, 20]. These metrics score individual training
examples and select the informative training examples while
discarding the prototypical examples. This procedure reduces
the overall size of the dataset without significantly affecting the

10.21437/Interspeech.2023-481



generalization performance. Pruned datasets constructed in this
manner enable efficient training of DNNSs, thus making them
suitable for resource-constrained environments. Several prun-
ing metrics have been proposed for various speech tasks as well
[21, 22, 23, 24, 25, 26, 27, 28, 29]. A key property of prun-
ing metrics for DNNs is that they require an initial training
run to compute the scores for all the training examples, which
makes the pruning procedure costly and does not scale well to
large datasets [6]. To address this, recent work proposes a self-
supervised dataset pruning algorithm for vision tasks [6], which
does not require example labels during pruning and is compu-
tationally cheaper. This approach has been shown to match the
performance of the best supervised-pruning metric for vision
tasks.

2.2. Resource-constrained anti-spoofing

The inefficiency of recent anti-spoofing models has encouraged
the development of alternate lightweight spoof detection meth-
ods. Knowledge-driven models have been developed to dis-
tinguish between spoofed and bonafide audios using only the
acoustic microfeatures, including Voicing Onset Time (VOT)
and Coarticulation [1, 4]. Alternatively, limited parameter vari-
ants of neural anti-spoofing models have been proposed, e.g.,
AASIST-L [3], that enable efficient inference and match the
EER performance of the larger models. Recent work proposes a
dataset-pruning algorithm for resource-constrained training of
anti-spoofing models [5]. The algorithm leverages forgetting
norm for scoring individual training examples. This pruning
metric combines the granularity of EL2N with the stability of
the forgetting scores, allowing more deterministic pruning of
ASVSpoof 2019 dataset. However, this metric still requires
an initial computation step, making it computationally intensive
and limiting scalability to larger datasets.

3. Preliminaries

Let A7 be a dataset consisting of pairs (x,y) ~ Pdata, Where
x is the audio instance, y € ) is the label (bonafide or spoof)
and Pgq+q 1s the probability distribution over the data. We use
S to denote the data pruning strategy and 7 to represent the
pruning metric. The goal of S is to leverage 7 to select infor-
mative examples from A} and construct a smaller dataset X.
This dataset is then used to train a neural anti-spoofing model
Np(z) having parameters 6 such that there is a minimal drop
in the generalization performance compared to a model trained
on full dataset &;. The performance of an anti-spoofing system
is computed through equal error rate (EER) or the ASV-specific
tandem decision cost function (t-DCF) [30].

Recently, there has been a consideration regarding the
growing computational cost (C) of the data pruning metrics,
which at the minimum scales linearly with the size of the orig-
inal dataset. The primary contributor to C is the initial training
run for computing scores of each training example. Our goal is
to develop a self-supervised pruning metric that minimizes this
cost while matching or preferably beating the performance of
the existing pruning metrics for neural anti-spoofing models.

4. Methodology

4.1. Existing pruning metrics

EL2N score [7]. It is the normed error of a training example
(x:,y:) and is calculated as the difference between predicted
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Figure 1: The workflow for self-supervised dataset pruning for
efficient training in audio anti-spoofing.

probabilities and the ground-truth label,

E W (2:) — will, ()
It captures the local information about the difficulty of a
training example in early training epochs. Harder-to-learn
examples have a high EL2N score while the easier-to-learn
examples have a low score. Thus, a pruning strategy S on
the EL2N score retains the higher-scoring examples while
discarding the rest.

Forgetting Score [8]. It represents the number of times an ex-
ample is forgotten during training, i.e., when the example is in-
correctly classified at the epoch ¢ after being classified correctly

att — 1.
N
Z]lzlsz*l
t=1

where Z! is 1 if the example is classified correctly at epoch ¢
and O otherwise. Examples with a higher forgetting norm are
harder-to-learn and are thus preferred by the strategy S for
inclusion in the pruned subset.

(@3

Forgetting Norm [S5]. It combines the stability of forgetting
scores with the granularity of EL2N. It achieves this by sum-
ming the difference between EL2N scores throughout training
only in the epochs where this score increases. This metric has
been shown to perform better on ASVSpoof 2019 dataset com-
pared to EL2N and forgetting score.

N
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Dataset Strategy EER min-tDCF
0 0.1 03 05 0.7 0.9 0 01 03 05 07 09
RawNet2 Random 524 568 652 697 832 1529 0.14 0.5 020 021 024 041
EL2N 523 584 624 774 1024 40.14 0.14 0.15 0.18 022 032 1.00
Forgetting Score 523 6.02 680 7.14 9.01 19.09 0.14 0.16 0.19 0.19 025 056
Forgetting Norm 523 564 6.02 6.76 811 2483 0.14 0.15 0.18 0.18 022 0.66
Self-Supervised 523 5.58 582 6.54 858 12.84 0.14 015 016 0.17 023 0.34
AASIST-L Random 210 2.8 2.67 354 490 1374 006 0.06 0.09 0.10 0.14 034
EL2N 210 214 299 346 554 3148 0.06 0.06 0.09 0.11 0.15 0.69
Forgetting Score  2.10 233 279 353 430 31.67 0.06 0.07 0.08 0.11 0.12 0.79
Forgetting Norm  2.10 2.13 239 275 3.65 3287 0.06 0.06 008 0.10 0.11 0.80
Self-Supervised  2.10 2.02 229 252 451 1030 0.06 0.06 0.07 0.09 0.13 0.27

Table 1: Pooled min-tDCF and EER (%) for different pruning metrics evaluated over [0, 0.1, 0.3, 0.5, 0.7, 0.9] dataset pruning fractions
on AASIST-L and RawNet2. We do three runs for each combination and report the mean EER and min-tDCF.

Table 2: EER (%) breakdown on the 13 attacks in the ASVspoof 2019 LA test set using the RawNet2 model on 0.9 pruning fraction.

Score A07  A08  A09 AI0 All A12 AI3 Al4 Al5 Al6 Al7 AI§ A19 | tDCF_EER

Random 1143 956 229 1025 1068 1511 506 1135 1204 1150 23.53 39.18 1811 | 1529 0.41

EL2N 4208 4442 3478 4359 3822 42.83 3840 3565 41.05 4088 4595 3508 37.75 | 40.14 1.00

Forgetting-Score || 1852 1569 655 1673 1634 1780 11.62 1778 1604 1333 2462 4500 2322 | 19.09 0.6

Forgetting-Norm || 27.74 20.69  7.99 2391 2235 2617 12.13 2373 2444 2324 3070 38.71 2849 | 2483 0.66

Self-Supervised 762 859 299 659 668 1225 3.3 957 911 772 1907 4265 1620 | 1284 034
4.2. Self-Supervised Pruning tems.

We now present a self-supervised pruning method for neu-
ral anti-spoofing models.  We first utilize a pre-trained
wav2vec2-base model (with 95M parameters) to ob-
tain the contextualized speech representation C (ci,...,cr
with T timesteps) for raw audios in the training dataset.
wav2vec2-base is a self-supervised model consisting of a
convolutional feature encoder that obtains latent representation
for a raw audio (X + Z) and a transformer that learns contex-
tualized representation from the latent representation (Z +— C).
For single audio, C is a multi-dimensional tensor (C € RI*H,
with [ as the sequence length, and h as the hidden size. We
flatten this and pad it to a length of 50, 000. We repeat this pro-
cess for each audio in the training set and output the contextual
representation for n training instances: A € R™*50000,

We then run k-means clustering on A and obtain & clus-
ters. We compute the cosine distance for each training instance
to its nearest cluster centroid. This distance theoretically rep-
resents the difficulty of each training example [6]. Thus, the
easier/prototypical examples are closer to their cluster centroid,
while the harder examples are farther away. The pruning strat-
egy (S) then constructs a ranked list of distances in descending
order and discards the bottom p examples while retaining the
top (1 — p) examples (for a pruning fraction p). The result-
ing dataset X is then used for training the neural anti-spoofing
model. The complete workflow is summarized in Fig. 1.

5. Experiments and Results
5.1. Dataset and Metrics

We use the ASVSpoof 2019 dataset, specifically its logical ac-
cess (LA) portion, for our experiments. The LA portion has
been split into train, development, and test splits (Table 3). The
training and dev splits contain audios generated through six di-
verse spoofing systems (AO1 to A06), including two voice con-
version (VC) and six text-to-speech (TTS) systems. The evalu-
ation split comprises audios generated through thirteen separate
systems (A07-A19), with two known and eleven unknown sys-

Table 3: Bonafide and spoof audios in the training, development
and test splits of the ASVSpoof 2019 LA portion.

Training Development Evaluation
Bonafide 2580 2548 7355
Spoof 22800 22296 63882

We use the tandem decision cost function (t-DCF) [30] and
equal error rate (EER) for our evaluation. t-DCF measures
the performance of an ASV system in tandem with the anti-
spoofing system whereas EER only reflects the anti-spoofing
performance.

5.2. Models

We use the RawNet2 [9] and AASIST-L [3] model for our
experiments. RawNet2 is an end-to-end neural anti-spoofing
model with convolutional neural network architecture. Its key
components include residual layers, GRU layer, and filter-wise
feature map scaling to derive discriminative representations.
AASIST-L is another end-to-end anti-spoofing model having
85K parameters and is the light-weight variant of AASIST. A
major component of AASIST-L is the heterogenous attention
mechanism that effectively models spoofing artifacts. For run-
ning our experiments, we use a single 23GB NVIDIA V100
GPU. The implementation of pruning metrics is done in Py-
Torch. We use a batch size of 32 and Adam optimizer, with le-4
initial learning rate and 1e-4 weight decay for training AASIST-
L and RawNet2. The models are trained for 50 epochs, and we
use the LA development set to select the best checkpoint for
final evaluation on the test set.

5.3. Results

Table 1 summarizes the EER and min-tDCF for five pruning
metrics across six pruning fractions on RawNet2 and AASIST-
L models, averaged across three independent runs. Overall,
Self-Supervised pruning demonstrates improvement in perfor-
mance over other pruning metrics. For the 0.9 pruning fraction
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Figure 2: t-SNE visualizations of ASVSpoof 2019 subsets pruned through different metrics including Random, EL2N scores, Forgetting
Score, Forgetting Norm, and Self-Supervised Pruning. The pruning percentage is set to 80%. The colors represent different attacks.

on RawNet2, we observe a 32.7% lower EER (19.09 vs. 12.84)
and a 39.2% lower min-tDCF (0.56 vs. 0.34) compared to the
second-best metric (forgetting score). This suggests that self-
supervised metric is also a suitable choice for extreme pruning
settings. We also compare the performance of different metrics
across individual attacks (A07-A19) on the LA evaluation set
on 0.9 pruning fraction. The results in Table 2 demonstrate the
better performance of self-supervised pruning on each of the
individual attacks compared to other pruning metrics.

5.4. Choosing the number of clusters

An important parameter in the self-supervised pruning process
is the number of clusters (k) chosen for k-means clustering algo-
rithm. We conduct an experiment to evaluate the impact of var-
ious values of k on the performance of the anti-spoofing model.
We run clustering with different k£ and create multiple pruned
subsets which are used to train separate anti-spoofing models.
As we observe in Fig. 3, the value of k does lead to minor
deviations in the final EER; however, the effect is inconsistent
across different pruning fractions. For extreme pruning frac-
tions (> 0.8), the changes in EER are more pronounced. This
suggests that for practical pruning percentages, the selection of
k has little influence over the final performance. If the number
of classes is known, selecting that as k is a suitable choice. In-
terestingly, our observation is consistent with earlier finding in
self-supervised pruning on ImageNet in vision tasks where the
value of k can deviate an order of magnitude without signifi-
cantly affecting the accuracy [6].
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Figure 3: Test EER of RawNet2 model on different values of k
in k-means for self-supervised pruning.

5.5. Comparison of pruned subsets

To understand the performance differences in pruning metrics,
it is important to analyze the changes in the composition of the
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pruned subsets. We visualize these subsets by first reducing
the dimensions of wav2vec?2 embeddings through the tree-
based t-SNE algorithm — with a perplexity value of 40 as sug-
gested in [2] — and plotting the reduced dimensions. Figure 2
shows the scatter plot of the processed embedding vectors for a
pruning percentage of 80%. The colors represent different at-
tacks (AO1-A06) in the pruned subsets. We notice differences in
the position and distribution of certain attacks across different
pruning metrics. The relative position of AO1 and A04 in self-
supervised is more similar to the unpruned dataset compared to
other metrics. Given these observations and the comparison in
Table 1 and 2, we hypothesize that the generalization perfor-
mance of an anti-spoofing model on unknown attacks in the test
set (e.g., A0O7-A19) is influenced by the training attack distribu-
tion (A01-A06, bonafide) and the quality of individual training
instances within subsets created via a particular pruning metric.
Further experiments that probe the nature of these individual
instances would serve to validate these findings.

5.6. Efficiency of self-supervised pruning

We now compare the efficiency of self-supervised pruning with
other pruning metrics, especially forgetting norm. We find that
the complete self-supervised dataset pruning procedure primar-
ily involving embedding computation through wav2vec2 and
k-means clustering only requires 8.51% of the total pruning
time that is required for computation of examples scores in other
metrics, specifically forgetting norm (in RawNet2) on a V100
GPU. Thus, self-supervised pruning is ~91% more efficient
than other pruning metrics, primarily since there are no expen-
sive computations of example scores in self-supervised pruning.

6. Limitations and Conclusion

We propose a self-supervised dataset pruning method for effi-
cient training in audio anti-spoofing models. Our approach out-
performs other supervised metrics and significantly reduces the
computational cost associated with a complete training run for
determining the example scores. While we evaluated our ap-
proach on the widely used, standard spoof dataset (ASVSpoof
2019), further experiments are needed to verify the generaliza-
tion of self-supervised pruning to other spoofed audio datasets.
Additionally, a more granular analysis of the pruned subsets at
the level of individual training instances would be helpful to un-
derstand the performance differences between different pruning
metrics.
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