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Abstract

Children with Cleft Lip and Palate (CLP) may experience dif-
ficulties in oral communication, leading to other developmental
problems such as delayed language acquisition and poor social
skills; thus, early treatment is essential for successful speech
rehabilitation. In this paper, we propose a methodology for
automatically assessing the phonological precision of children
with CLP. We propose to use the probabilities obtained from
a phonological class recognizer to measure phonological pre-
cision during connected speech. Furthermore, we compute the
nasal-to-sound ratio to improve the automatic detection of the
nasality level. For this, we considered speech recordings of 88
children with CLP, assessed by a clinician according to four
nasality levels: normal, mild, moderate, and severe. We ob-
tained an F1-score of up to 0.54 for detecting the nasality level
automatically. The results suggest that phonological analysis
can be used for individualized speech rehabilitation.

Index Terms: phonological analysis, deep learning, cleft lip
and palate, pathological speech processing, children’s speech.

1. Introduction

Oral communication of children with Cleft Lip and Palate
(CLP) can be affected in several ways. CLP can cause Velopha-
ryngeal Dysfunction (VPD), resulting in hypernasality, charac-
terized by excessive resonance in the nasal cavity when produc-
ing vowels or voiced consonants [1]. VPD can also cause a sig-
nificant nasal emission due to a large velopharyngeal opening,
resulting in weak consonant production, short utterance length,
and the development of compensatory articulation productions
[2]. Clinical assessment is necessary to determine whether the
child requires speech therapy, further surgery, or both. How-
ever, speech production can be impaired even after surgery [3].
Children with CLP should receive early and constant speech
therapy to develop complete control of the pharyngeal velum
in the shortest possible time. One possible way to increase the
speed of rehabilitation is to implement assistive speech technol-
ogy based on phonological analysis. By breaking down spoken
words into their sound units, speech therapists can help children
learn to produce and distinguish between different sounds more
accurately. This process can involve teaching specific articula-
tory movements, such as how to position the tongue and lips
for certain sounds. Through targeted phonological analysis and
therapy, children with CLP can improve their speech intelligi-
bility and overall communication [4].

1.1. Related work

Many studies in the literature have considered spectral-based
analysis for automatic detection of speech nasalization in chil-
dren with CLP [5, 6, 7, 8]. However, a relatively lower number
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of studies have considered phonological-based analysis for as-
sisted assessment of speech nasalization [9]. The authors of
[10] proposed automatic detection of articulation disorders in
58 German children with CLP, using several classifiers (late fu-
sion) and an Automatic Speech Recognition (ASR) system to
compute phoneme and word-level features such as Goodness
of Pronunciation (GoP), phoneme posteriors, and word confi-
dence score. Expert clinicians annotated the number of hyper-
nasalized vowels and consonants, weakened pressure conso-
nants, glottal articulation, and pharyngealizations. The authors
obtained a Pearson’s correlation coefficient of up to 0.89 be-
tween the percentage of mispronounced words and the rate
of detected articulation errors. In [11], the authors consid-
ered speech recordings of 60 children (native American En-
glish speakers) with cleft palate to investigate the impact of
forced-alignment errors in stop, fricative, nasal, approximant,
and vowel sounds. For this, the authors computed the GoP us-
ing manual and automatic phoneme alignments and reported
that nasal and vowel sounds impacted forced alignment the
most. In [12], the authors proposed nasal distinctiveness fea-
tures to assess hypernasal speech. Although the authors consid-
ered recordings from 75 speakers diagnosed with clinical condi-
tions different than CLP, their method allows measuring nasal-
ization in stop sounds (/p/, /t/, /b/, and /d/) by computing the
log-likelihood ratio of the phoneme posterior probability and its
corresponding nasal cognate, i.e., the nasal sound with a similar
place of articulation. The authors performed regression analy-
sis with the proposed features and found significant correlations
with perceptual nasality scores.

1.2. Contributions of this work

In this paper, we propose an automatic method for measur-
ing the phonological precision of children with CLP. An ex-
pert clinician assessed the nasalization level of the children ac-
cording to four levels: normal, mild, moderate, and severe.
Phonological precision is measured using posterior probabil-
ities computed from the output of a recurrent neural network
with Long-Short Term Memory cells (LSTM) and convolu-
tional layers trained to automatically detect speech sounds ac-
cording to voicing, manner, and place of articulation. We called
this system PhonoQ and is based on the work presented in [13].
The probabilities computed with the network are used to pre-
dict the phonological class of a speech segment. We assume
that these probabilities quantify “how well a sound was under-
stood” by PhonoQ; thus, it measures the phonological preci-
sion. For comparison, we also estimate the time alignments us-
ing a semi-supervised approach: forced alignment is performed
with a web-based ASR, and the phonological precision is mea-
sured with PhonoQ. We also compute the nasal-to-sound ratio
to measure the amount of nasalization in a speech segment.
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2. Materials and Methods
2.1. Data

Speech recordings of 88 children with CLP were considered for
analysis. All children are native Spanish speakers from Colom-
bia. The recordings were sampled at 16kHz with a 16-bit reso-
lution. An expert clinician assessed the degree of speech nasal-
ization of the children according to four levels: normal (20 chil-
dren), mild (28 children), moderate (25 children), and severe
(15 children). The children were asked to read the sentences
reported in Table 1

Table 1: Sentences read by the children with CLP.

Key | Sentence | TPA translation
Carlos | Carlos coge su pelota | karlos koxe su pelota
Gato El gato toma leche el gato toma letfe
Llave | Lallave de la casa la £afe de la kasa
Silla La silla es cafe la sifa es kafe

Susi Susi come sopa susi kome sopa
Tomas | Tomas toca tambor tomas toka tambor

2.2. Phonological analysis
2.2.1. Phonological class recognition

We implemented an automatic phonological recognizer
(PhonoQ") using an LSTM to predict 18 phonological classes
(including silence) according to voicing, manner, and place of
articulation (see Table 2). Furthermore, we trained the LSTM

Table 2: Phonological classes considered in this study.

Dimension Class Examples (IPA)
0 - Silence -
1 Manner Stop Ip/, Itl, IK/, /bl 1d], Ig/
2 Nasal /n/, Im/, [y/
3 Trill I, [t/
4 Fricative Ist, [/, 121, Il
5 Approximants il
6 Lateral n
7 Vowel flal, lel, i/, lol, ln/
8 Place Labial Ipl, v/, Im/, /1, Iv/
9 Alveolar It 1d/, Inl, Itl, Is], Iz], I/
10 Velar K/, Igl, x, [/
11 Palatal fil, 1&/
12 Postalveolar /I
13 Central lal, [a:/
14 Front /i, le/
15 Back u/, lo/
16 Voicing Voiceless Ipl, Itl, X1, [[], Is/
17 Voiced /m/, n/, /bl, /d/, Ig/, la/

as a multilabel classifier because some speech sounds can be
part of multiple classes, e.g., /p/ belongs to the “stop”, “labial”,
and “voiceless” classes. The network predicts phonological
sequences by computing the probability of the occurrence of
a phonological class in a speech recording; thus, the output
consists of sequences of phonological posterior probabili-
ties. Figure 1 shows an example of the sequence of phonologi-
cal posterior probabilities computed from the recording for the
Spanish word “sopa” (IPA: /sopa/).

Ihttps://github.com/TAriasVergara/PhonoQ
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Figure 1: Sequence of phonological posterior probabilities

computed from the recording of the Spanish word “sopa”.

2.2.2. Training

The architecture of PhonoQ is shown in Figure 2. We trained
the model with the TEDx Spanish Corpus (TSC)?, a dataset
containing 24 hours and 29 minutes of speech recordings (from
TEDx events) from 142 Spanish native speakers. The input ten-
sors are chunks of 500 ms extracted from the speech signals.
Then, Mel-spectrograms are computed for each chunk using 64
triangular filters and Hanning windows of 25 ms with a step size
of 10 ms. The convolutions are performed with a 3x3 kernel
and ReL U activation functions; however, we use a padding of 1
in the time axis to keep a one-to-one relation between the length
of the input (speech sequence) and the output (phonological pre-
diction). Max-pooling is performed only in the frequency axis
with a 1x2 kernel. We optimize the model using the Adam
algorithm with a learning rate of 7 = 10~* and binary cross-
entropy logistic loss. Furthermore, we used class weights (com-
puted in the training set) in the loss function to account for
class unbalance, i.e., some phonological classes are underrep-
resented. We use a batch size of 100 and consider an early
stopping strategy of seven epochs. The output of the phono-
logical class recognizer is the posterior probabilities computed
with a sigmoid activation function. To predict the phonological
sequence from a recording is necessary to divide the signal into
chunks of 500 ms; thus, we align the phonological predictions
by concatenating the output of the LSTM.

2.2.3. Unsupervised measure of phonological precision

The phonological class recognizer makes predictions based on
posterior probabilities. In this study, we use these probabilities
to measure phonological precision in children with CLP and in-
vestigate the influence of nasalization on speech production. We
assume that the phonological class recognizer is trained with
“good spoken” Spanish; thus, the posterior probability indi-
cates how well the system “understands” certain sounds, i.e.,
the closer the phonological class probability to “1”, the better a
speaker pronounces it. Note that in Figure 1, the posterior prob-
abilities decrease in the transition from one predicted phono-
logical class to another, which is normal because it reflects the
movement of the articulators when going from one sound to an-
other. For this reason, we measure phonological precision by
computing the maximum posterior probability (MaxPh) of the
predicted phonological segment. Additionally, since a speech
recording may contain several speech segments for the same
phonological class, we compute the average MaxPh per phono-
logical class. Figure 3 shows the radar plot of the average
MaxPh computed for children with normal, mild, moderate,

2http://www.ciempiess.org/downloads
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Figure 2: Architecture of PhonoQ.

and severe nasalization levels. The figure shows that “stop” and
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Figure 3: Phonological precision (average MaxPh) of the CLP
children using the unsupervised approach.

“alveolar” phonological classes have the highest difference be-
tween groups, “back” vowels have the lowest phonological pre-
cision compared to “central” and “front” vowels, and in general,
children with severe nasalization have lower MaxPh compared
to the other groups. Note also that the phonological precision
for “vowel” is relatively high, even though the “back” class have
relatively low values. The reason is that “vowel” contains all
vowels regardless of the place of articulation; thus, the general
precision is higher, which shows the importance of considering
different phonological categories for speech assessment.

2.2.4. Nasal-to-sound ratio

Additional to the phonological precision, we also computed the
nasal-to-sound ratio, which in this study is defined as the level
of nasalization in a phonological class. We compute this mea-

sure as
N = L)
MaxPh,,

where MaxPh,, is the (maximum) probability that a speech seg-
ment is a phonological class p and P(n|p), is the probability
that p is a nasal sound. Values of rN close to 1 (or higher) rep-
resent high nasalization.

M
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2.2.5. Semi-supervised measure of phonological precision

We performed forced alignment on the recording to measure
phonological precision using the posterior probabilities com-
puted from our recognizer. We used the BAS CLARIN web
service [14] to get the time stamps of every phonological class
in the recording and labeled them according to the classes re-
ported in Table 2. Then, we computed MaxPh and rN for every
phonological class in the intervals obtained with the ASR. Fig-
ure 4 shows the phonological precision measured with the semi-
supervised approach. Compared to the unsupervised approach,
the difference between children with normal, mild, moderate,
and severe nasalization is more evident for the “stop”, “alveo-
lar”, “velar”, and “labial” phonological class.
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Figure 4: Phonological precision (average MaxPh) of the CLP
children using the semi-supervised approach.

2.3. Automatic classification

We trained a linear multiclass Support Vector Machine (SVM)
to predict the nasality level of the children. The margin parame-
ter C' was optimized through a grid search with 277 < C' < 23
using a nested 10-fold cross-validation strategy, i.e., for every
fold, an internal 9-fold cross-validation is performed to find the
optimum C'. We tested the performance of the SVM by com-
puting the median of the best C' obtained during training; then,
we performed cross-validation again with fixed parameters. The



classifier’s performance is evaluated with the F1-score, the pre-
cision, and the recall. We used a linear SVM to avoid overfitting
due to the limited sample size.

2.4. Feature importance

We ranked the feature intelligibility features using permutation
feature importance, an inspection technique used to evaluate the
dependence of a model (e.g., the SVM) on a set of features®. In
this study, the importance of a feature is defined as the decrease
in the F1-score when a single feature is randomly shuffled be-
tween samples, thus, breaking the relationship between feature
and target. The feature importance was evaluated during train-
ing. Then, the average importance score is computed to obtain
the final ranking of features.

3. Experiments and Results

We performed automatic classification of children with normal,
mild, moderate, and severe nasalization levels using the phono-
logical precision and nasal-to-sound ratio. This classification
task is important to have an overall assessment (i.e., a second
opinion for the clinician) of the progression of the speech re-
habilitation, which can be complemented with individual anal-
ysis of phonological precision. The classification is performed
for each sentence to investigate the dependency on the phonetic
content for assessing nasality, e.g., the keyword sentences “Car-
los”, “Llave”, and “Silla” contains stop, fricative, and lateral
sounds but not nasals. Table 3 shows the classification results
with and without feature importance analysis for the unsuper-
vised and semi-supervised approaches. Overall, feature selec-

Table 3: Results for automatic detection of nasality levels using
unsupervised and semi-supervised approaches. Task: sentence
keyword. # feats: number of features. Prec: precision. Rec:
recall. F1: Fl-score

Unsupervised
Task All features Feature importance
#feats Prec Rec F1 | #feats Prec Rec F1
Carlos 34 046 044 045 11 059 054 0.54
Gato 34 030 029 0.29 6 043 044 043
Llave 34 028 027 0.26 12 042 038 0.38
Silla 34 024 024 024 18 036 034 0.35
Susi 34 031 031 0.30 2 0.56 0.51 0.50
Tomas 34 030 031 0.30 14 036 036 0.35
Average - 031 031 0.31 - 045 043 042
Semi-supervised
Task All features Feature importance
#feats Prec Rec F1 | #feats Prec Rec F1

Carlos 34 045 044 044 9 050 049 0.49
Gato 34 036 035 0.34 13 044 042 043
Llave 34 031 032 0.31 7 047 044 045
Silla 34 036 034 034 9 054 051 052
Susi 34 042 042 041 15 049 048 047
Tomas 34 036 032 0.33 12 0.54 048 0.50
Average - 038 036 0.36 - 0.50 047 048

tion improved the automatic detection of nasality levels for all
sentences. In the case of the supervised method, the best re-
sults were obtained with the sentences “Carlos” (F1=0.54) and
“Susi” (F1=0.50), while for the semi-supervised the best results
were obtained with “Silla” (F1=0.52) and “Tomas” (F1=0.50).
To better understand this mismatch, we plotted the word clouds
of the top 10 ranked features (per sentence) for the unsupervised
and semi-supervised approaches. Figure 5 shows the obtained
results. In the figure, “alveolar” (e.g., /t/, /d/, /n/) and “voice-

3https://scikit-learn.org/stable/modules/
permutation_importance.html
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Figure 5: Feature importance analysis for the unsupervised and
supervised methods.

less” sounds (/t/, /p/, /s/) appear to be among most of the ranked
features for both unsupervised and semi-supervised approaches.
For the unsupervised approach, “labial”, “lateral,” and “central”
phonological classes were more frequently ranked as impor-
tant across sentences. For the semi-supervised approach, the
most important features were the “velar”, “stop,” and “vowel”
sounds. Nasal-to-sound ratios were also among the top 10 fea-
tures across sentences; however, their ranking was lower than
the phonological precision features.

4. Discussion and Conclusion

We presented a methodology to automatically estimate phono-
logical precision from children with CLP on four levels of
nasalization: normal, mild, moderate, and severe. We trained
a phonological class recognizer called PhonoQ to measure
phonological precision and the nasal-to-sound ratio. Unsuper-
vised and semi-supervised approaches were used to obtain the
time alignments of the phonological classes. When we com-
pared the radar plots of the phonological precision obtained
with the two approaches, we observed a similar trend on the
affected sounds, i.e., the “back” vowels are the most affected
by nasalization, and “alveolar” and “stop” sounds exhibits the
higher difference between groups. However, these differences
can be observed better in the radar plot obtained with forced
alignment, which we expected due to the better match between
the measured phonological precision in the actual time inter-
val. Additionally, we performed a feature importance analysis
for every sentence uttered by the children. As expected, fea-
ture selection improved the identification of the nasality level.
When we compared the top 10 features from each sentence, we
observed that “alveolar” sounds were ranked as the most im-
portant using the unsupervised and semi-supervised methods,

e., “alveolar” sounds were the most affected by nasalization
for our sample group. Our results are promising but not conclu-
sive, as we have to consider the limitations of our dataset. For
instance, with the available number of samples, it is not wise
to generalize our findings regarding phonemic precision errors
or feature importance selection; however, it is a good starting
point considering the differences between groups.
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