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Abstract
Single-channel (1-ch) speech enhancement (SE) has been
widely studied, and high accuracy has been achieved recently.
However, enhanced speech still includes some errors that af-
fect human hearing quality and SE applications, e.g., automatic
speech recognition (ASR). Previously, [Iwamoto et al., “How
bad are artifacts?: Analyzing the impact of speech enhancement
errors on ASR” in Interspeech 2022, pp. 5418–5422] decom-
posed the errors in an enhanced signal into residual noise and
artifact components, and analyzed their impacts on ASR per-
formance. They showed that the artifacts have a greater impact
than the residual noise on ASR. Although the impact on hu-
man intelligibility has not been investigated yet, it is essential
to get the knowledge to develop SE techniques suitable for both
humans and machines. This paper, therefore, investigates the
effects of such error factors on human listening. Our subjective
test results show that the artifacts have a large impact on human
intelligibility, and that residual noise has a lesser impact. This
tendency is similar in machine ASR.
Index Terms: Single-channel speech enhancement, artifact,
residual noise, speech intelligibility, speech recognition

1. Introduction
Single-channel (1-ch) speech enhancement (SE) is important in
many applications where multiple microphones are unavailable.
Recently 1-ch SE using deep learning (DL) has been widely
studied and has achieved high performance [1, 2, 3, 4, 5, 6, 7].
However, the enhanced speech by 1-ch SE still contains errors
due to residual noise and artifacts in enhanced speech. These er-
rors affect both human listening and speech applications of SE,
e.g., automatic speech recognition (ASR). In this paper, we in-
vestigate the impacts of residual noise and artifact components
in an enhanced speech on human hearing quality and ASR. Our
motivation and ultimate goal are to obtain basic data for: (a) de-
veloping SE techniques suitable for both humans and machines
(including ASR) and (b) developing a rational ASR-based intel-
ligibility prediction method.

Although subjective evaluations of 1-ch SE have recently
been conducted in several challenges, e.g., [7], the impact of
SE errors on subjective evaluation scores remains inadequately
investigated. Venkataramani et al. [8] conducted a listening test
on enhanced signals in a speech separation task using a DL-
based 1-ch SE with performance measures SDR/SIR/SAR1 in
BSS Eval [9] and STOI [10]. However, they have not reported
the effects of residual noise (interference) and artifacts alone
on human listening. Yamamoto et al. [11] evaluated the intel-
ligibility of enhanced speech signals with an ideal ratio mask

1Signal-to-distortion ratio, signal-to-interference ratio, and signal-
to-artifact ratio, respectively.

(IRM), which is an oracle mask widely used as a training target
of DL-based SE in noise reduction tasks (e.g., [1, 2, 4]). How-
ever, they did not investigate the impact of residual noise and
artifacts in enhanced speech signals on human intelligibility.

There have been many works on ASR with a 1-ch SE front-
end [12, 13, 14, 15], and it had been reported that most 1-ch
SE approaches tend only slightly to improve or even degrade
ASR performance. Another work [16] decomposed SE errors
into residual noise and artifacts of the enhanced speech, and
analyzed the factors that impact ASR performance, concluding
that artifacts affect ASR significantly more than residual noise.
While it is important to create such SE techniques that are suit-
able for ASR, it is also important to consider whether these tech-
niques are suitable for human listening as well. Furthermore, in
recent years, researchers have studied using ASR as a metric
to predict speech intelligibility for humans [17, 18, 19, 20]. To
develop a rational predictor based on ASR, we must confirm
whether human perception and ASR exhibit similar behavior to
residual noise and artifacts.

This paper conducted subjective tests and investigated the
impact of residual noise and artifacts in enhanced speech sig-
nals on human intelligibility. As SE, we employed the ideal
ratio mask (IRM), which is widely used as a training target of
DL-based SE approaches (e.g., [1, 2, 4]). We also compared
the impact on human intelligibility with that on ASR systems.
We report that the artifacts in SE error largely impact human in-
telligibility, whereas the residual noise component has a lesser
impact, which is a result that similar to the impact of SE on
ASR.

2. Errors in enhanced signals
In this paper, we evaluate the impact of SE errors on both human
listening and ASR performance in the following procedures:

1. Obtaining enhanced signals using IRM [Sec. 2.1].
2. Decomposing SE errors into several factors [Sec. 2.2].
3. Modifying the enhanced signals by rescaling each error fac-

tor [Sec. 2.3]
4. Conducting subjective and objective tests, i.e., evaluating the

modified enhanced signals in terms of intelligibility (subjec-
tive) and WER (objective) [Secs. 3 and 4]

5. Analyzing the impacts of the error factors on the intelligibil-
ity and the WER [Sec. 4].

This section explains steps 1–3.

2.1. Speech enhancement with ideal ratio mask (IRM)

This paper focuses on the 1-ch SE (noise reduction) task. Let
x ∈ RT denote a T -length time-domain waveform of the ob-
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Figure 1: Decomposition of speech enhancement errors.

served signal. The observed signal is modeled as
x = h ∗ c+ n = s+ n, (1)

where c ∈ RT , h ∈ RL, and n ∈ RT are a clean speech
signal, an impulse response of L-tap from the speech source to
a microphone, and a noise signal, respectively. “*” denotes the
linear convolution, and s = h ∗ c is a source image. The aim of
SE is to reduce noise signal n from observed signal x.

As a 1-ch SE, this paper employs an IRM. An IRM itself,
or enhanced speech with an IRM, is widely used as a training
target of deep neural networks (DNNs) for SE (e.g., [1, 2, 4]).
We evaluated the original IRM [1] to ascertain the baseline of
the performance. First, we obtained the time-frequency repre-
sentation of Eq. (1) with a short-time Fourier transform (STFT):

xτf = sτf + nτf , (2)
where τ and f are time and frequency indices, respectively. The
IRM for enhancing the speech signals is given as [1]

Mτf =

( |sτf |2
|sτf |2 + |nτf |2

)0.5

, (3)

and the enhanced signal in the STFT domain with the IRM is
ŝτf = Mτfxτf . (4)

Enhanced speech signal ŝ is obtained by applying the inverse
STFT and the overlap-add to ŝτf .

2.2. Speech enhancement error decomposition

We employed the orthogonal projection-based error decompo-
sition approach that was originally introduced for designing the
SE evaluation metrics [9]. The estimated signal ŝ, which in-
evitably contains estimation errors, is decomposed into three
terms: 2

ŝ = starget + enoise + eartif, (5)

where starget ∈ RT is the target source component, which origi-
nated from s, and enoise ∈ RT and eartif ∈ RT denote noise and
artifact error components, respectively. Figure 1 illustrates this
signal decomposition framework.

The decomposed terms in Eq. (5) are obtained using pro-
jection matrices:

starget = Psŝ, (6)
enoise = Ps,nŝ−Psŝ, (7)
eartif = ŝ−Ps,nŝ, (8)

where Ps ∈ RT×T is the orthogonal projection matrix onto the
subspace spanned by the source signals, and Ps,n ∈ RT×T is
the orthogonal projection matrix onto the subspace spanned by
the source and noise signals. See [9] and [16] for more details
about projection matrices.

2Unlike Vincent et al. [9], this paper focuses on a 1-ch SE (noise
reduction) task without interfering speakers, and thus reformulates the
equations by focusing on only noise and artifact errors.

2.3. Modifying enhanced signals by controlling errors

After decomposing enhanced signal ŝ with orthogonal
projection-based decomposition, as in Sec. 2.2, we synthesized
a modified version of enhanced signal ŝω ∈ RT by directly
scaling error components enoise, eartif:

ŝω = starget + ωn enoise + ωa eartif, (9)
where ωn and ωa are the parameters that control the amount of
noise and artifact error components.

A previous work [16] also showed that adding a scaled
version of an observed signal to an enhanced signal also im-
proved the ASR performance. We call this technique “observa-
tion adding”. The procedure for the observation adding is

ŝω = (1− ωoa)ŝ+ ωoax, (10)
where ωoa controls the amount of added observed signal to the
enhanced signal. In this paper, we set ωoa = 0.5.

3. Experimental conditions
3.1. Noisy observations

For the clean speech c in Eq. (1), we used Japanese 4-mora
words provided in a database, FW07, which was developed for
intelligibility tests with careful control of word familiarity and
phonetic balance [21]. The dataset contains 400 words for each
of the four familiarity ranks, and the average duration of a 4-
mora word is approximately 700 ms. The speech sources were
obtained from a word set of the least familiarity to prevent in-
crement to speech intelligibility scores by guessing commonly
used words. In this paper, we used the speech sources uttered
by a male speaker (label ID: mis).

We also prepared recorded noise signals n and impulse re-
sponses h in Eq. (1). For noise n, we used recorded babble
noise: multi-speaker speech signals were played simultaneously
from many loudspeakers on a large office floor and recorded us-
ing a microphone in a conference room adjacent to the office
floor (reverberation time: approx. 360 ms; door open). We also
measured impulse response h from 12 loudspeaker positions to
the microphone in the conference room.

Observed signal x in Eq. (1) was produced by convolving a
clean speech c and an impulse response h, which was randomly
selected from 12 source positions, and adding babble noise n.
The input signal-to-noise ratio (iSNR) conditions ranged from
−9 to +3 dB in 3-dB steps. These noisy speech signals were
denoted as “unprocessed.” The processing was performed at
a 16 kHz sampling rate, and the sounds were then upsampled
to 48 kHz to ensure stable playback in a web-based experi-
ment with/without an external digital-to-analog interface (See
Sec. 3.3).

3.2. Speech enhancement front-end

SE was performed using the IRM (Eqs. (3) and (4)). The win-
dow length and the window shift for the STFT were 128 and
32 msec., respectively.

Next we created modified enhanced speech signals ŝω us-
ing Eqs. (9) and (10). Figure 2 shows the signal-to-distortion
ratio (SDR), the signal-to-noise ratio (SNR), and the signal-to-
artifact ratio (SAR) values [9] for modified enhanced signals ŝω
when we controlled ωa (Fig. 2a), ωn (Fig. 2b), and ωoa (Fig. 2c).

3(This footnote is for Fig. 2.) Even when ωa = 0 or ωn = 0, the
SNRs and SARs were not ∞. This is presumably because SDR, SNR,
and SAR were calculated after reconstructing modified signals ŝω .
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(c) Observation adding

Figure 2: SDR, SNR, and SAR values [dB] for modified signals
ŝω . Values outside the range are indicated by numerical values
below the arrows, because SAR in (a) and SNR in (b) for ωa=0
and ωn = 0, respectively, were quite large3. “x dB” in the
legends denotes iSNR.

3.3. Subjective test procedure

We conducted subjective tests using a crowdsourcing service
provided by Lancers Co. Ltd. in Japan [22]. Any crowdworker
could participate in the experimental task on a first-come-first-
served basis. These experiments were performed using web
pages developed for remote speech intelligibility experiments
[23, 24, 11]. The participants were required to perform the ex-
periments in a quiet place and to adjusted the volumes of their
devices to an easily listenable level. They were instructed to
write down the word that they heard using hiragana characters
after listening the word once. There was a practice session for
understanding the task, but no training session for advanced ex-
ecution of the task.

We divided the subjective test into two sets: (i) an artifact-
controlled set {unprocessed, (ωn, ωa)=(1.0,1.0), (1.0,0.0),
(1.0,1.5)} and (ii) a noise-controlled set {unprocessed,
(ωn, ωa)=(0.0,1.0), (1.5,1.0), observation adding}. The total
number of presented stimuli was 400 words, comprising a com-
bination of the four enhancement conditions of sets (i) or (ii),
and the five iSNR (−9,−6,−3, 0,+3 dB) conditions with 20

words per condition. Each subject listened to a different word
set, which was assigned randomly to avoid bias caused by word
difficulty. For each set, 31 participants completed full tasks.
Their native language was Japanese. None of them reported
any hearing loss.

3.4. Speech recognition system

For a speech recognizer, we adopted ESPnet [25], which
is open-source software for an end-to-end speech processing
toolkit for building ASR systems that offer high performance
against various benchmark tasks [26]. The ASR system was
trained using training datasets comprised of the Corpus of Spon-
taneous Japanese (CSJ), one of the largest Japanese lecture
speech corpora [27, 28]. For the training datasets, we used
both clean signals and those contaminated with babble noise
and impulse responses, which were recorded in the same rooms
in Sec. 3.1. No enhanced signals were used for the ASR train-
ing. We trained the ASR system using the default setup of
the ESPnet CSJ recipe [29], which exploits a state-of-the-art
Transformer-based attention encoder-decoder model [30] with
a connectionist temporal classification objective [31]. Since the
speech of the evaluation data (FW07) is slower than the training
data (CSJ), the values of the speed perturbation factor [32] were
reduced to 0.8, 0.9, and 1.0 from their default values.

We used a default recurrent neural network language model
trained according to the ESPnet CSJ recipe. For consistency
with FW07 ’s evaluation data, we changed the output tokens
of the ASR system from Japanese characters, which include
both phonogram and ideograph characters, to hiragana charac-
ters, which are phonogram characters that roughly correspond
to Japanese morae or consonant-vowel syllables.

4. Results and discussions
4.1. Regarding artifacts and residual noise
Figures 3a and 3b show the results of the subjective tests when
controlling ωa and ωn in Eq. (9), respectively. Comparing
Figs. 3a and 3b, it can be seen that human intelligibility was
highly affected when ωa was controlled (Fig. 3a), on the other
hand, the difference in intelligibility scores was not very large
when ωn = 0.0 and 1.5 (Fig. 3b). This tendency is similar to the
results reported in [16], where the ASR performance was signif-
icantly affected by the artifact component and less affected by
the noise error component.

Figure 4 compares the human and machine results. The
subjective test results in Figs. 4a, 4c, and 4e are represented
with a word incorrect rate (= 100 - correct rate, (%)) while the
ASR results in Figs. 4b, 4d, and 4f are represented in word error
rate (WER, (%)). The horizontal axes are the conditions of ωa

and ωn in Eq. (9) and ωoa in Eq. (10). Regarding the ASR per-
formance (Figs. 4b and 4d), WER was highly degraded as ωa

increased; on the other hand, WER was only slightly affected
by ωn. This tendency is identical as in the subjective experi-
ments shown in Figs. 4a and 4c. Similar results were previously
reported [16].

It should be noted that artifact error ||eartif|| was larger than
noise error ||enoise||, as shown from the SDRs for ωa = 0
and ωn = 0 in Fig. 2, and this may be one of the reasons
why the artifacts had larger impacts on both humans and ASR.
However, we still see that the artifacts had a significant im-
pact on both the human and the ASR. The evaluation of the
case where ||enoise|| ≃ ||eartif|| while keeping the overall error
amount (SDR) is one of our future works.
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(a) ωn = 1.0, ωa = {0.0, 1.0, 1.5}.

(b) ωa = 1.0, ωn = {0.0, 1.5}; observation adding. 　

Figure 3: Human subjective test results: mean and standard
deviation of word correct rates (%).

4.2. Regarding observation adding

The subjective test results for observation adding are shown as a
red long dashed short dashed line in Fig. 3b. In our experiments,
observation adding improved the intelligibility of the unpro-
cessed signal (black dashed line); however, it highly degraded
the intelligibility compared to the enhanced speech (green and
blue lines). This is probably because the ωoa（Eq. (10)) used
here was 0.5, which is considerably larger than the practical SE
post-processing (e.g., ωoa < 0.1). Actually, from Fig. 2c, the
observation adding (ωoa = 0.5 in the figure) degraded SDR
and SNR more than the original enhanced signal ŝ (ωoa = 0 in
Fig. 2c), while it improved the SAR. That is, the impact of the
degradation in SNR overrode the impact of the improvement in
SAR; therefore, the intelligibility scores dropped. This result is
also true for ASR in our experiments, as shown in Fig. 4f, that is,
observation adding increased the WER. This result differs from
that of Iwamoto et al. [16]. One of the reasons may be that our
noise was recorded babble noise and Iwamoto et al. used pub-
lic noise (from CHiME-3 [33]) [16], and the babble noise may
make ASR more difficult. This suggests that further research
is needed on the question of how to determine the preferable
parameters of observation adding ωoa for humans and machines
(ASR) by looking at the type of noise and the SNR and SAR
balance.
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Figure 4: Human subjective test results (left column) and ma-
chine ASR results (WER [%]) (right column) as functions of ωa,
ωn, and ωoa. Note that vertical axis of human results is incor-
rect rate, i.e., 100－ correct rate (%), to make comparison with
machine WER easier. “x dB” in the legends stands for the iSNR.

5. Conclusions
We investigated the impact of residual noise and artifacts in en-
hanced speech signals on human intelligibility. It was shown
that artifacts have a large impact on human intelligibility; on
the other hand, the residual noise components have a lesser im-
pact. This tendency is similar to the impact of SE on ASR. Our
future work includes the development of SE approaches that are
suitable both for humans and machines.
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