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Abstract

Recently, recurrent neural network transducer (RNN-T) gains
increasing popularity due to its natural streaming capability as
well as superior performance. Nevertheless, RNN-T training re-
quires large time and computation resources as RNN-T loss cal-
culation is slow and consumes a lot of memory. Another limita-
tion of RNN-T is that it tends to access more contexts for better
performance, thus leading to higher emission latency in stream-
ing ASR. In this paper we propose boundary-aware transducer
(BAT) for memory-efficient and low-latency ASR. In BAT, the
lattice for RNN-T loss computation is reduced to a restricted re-
gion selected by the alignment from continuous integrate-and-
fire (CIF), which is jointly optimized with the RNN-T model.
Extensive experiments demonstrate that compared to RNN-T,
BAT reduces time and memory consumption significantly in
training, and achieves good CER-latency trade-offs in inference
for streaming ASR.

Index Terms: RNN-T, memory-efficient, low-latency, CIF

1. Introduction

Recently, the recurrent neural network transducer (RNN-T) [1]
has emerged as a promising end-to-end ASR framework due
to its competitive performance and streaming-friendly nature.
RNN-T models the acoustic and language features jointly,
which eliminates the drawbacks in the output-independent CTC
model [2]. Nevertheless, this appealing feature comes at the
cost of high memory and computation consumption during
training. Specifically, the RNN-T loss calculates on a 4-D lat-
tice of shape (N, T, U, V), where N is the batch size, T is the
output length of the acoustic encoder, U is the output length
of the prediction network, and V is the vocabulary size. The
large memory requirements limit the RNN-T training over large
batches and hence slow down the training speed, especially
for languages like Mandarin, where a large vocabulary set is
adopted. To overcome it, frame downsampling or skipping [3]
(reducing T), restrictions on the RNN-T lattice (reducing T or
U) [4, 5], sampled softmax (reducing V) [6], encoder and pre-
diction output combination (reducing memory waste caused by
padding) [7], function merging (reducing memory waste caused
by calculating and storing intermediate variables) [7], and more
efficient training pipeline (reducing training epochs) [8] have
been studied in the previous work. In these works, the main
challenge is to reduce memory consumption without degrada-
tion of accuracy.

Another important issue for RNN-T is the emission la-
tency. RNN-T model optimized with unregularized loss tend to
use more (future) context to produce better predictions, which
causes significant emission delays [9] (the difference between
the user speaking and the model prediction). To address it,
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Figure 1: Boundary-aware training of RNN-T with the CIF
alignment.

sequence-level emission regularization [9] and token-level re-
strictions to enforce prediction within a reasonable time win-
dow [5, 10] were adopted in the previous work. Despite the
progress, it is still challenging to obtain good WER-latency
trade-offs.

In this paper, we propose boundary-aware transducer (BAT)
for memory-efficient, low-latency ASR, as illustrated in Fig. 1.
In BAT, the lattice for RNN-T loss calculation is reduced to a
restricted region selected by the continuous integrate-and-fire
(CIF) alignment [11]. Thus, we only need to consider the for-
ward variables a(t,u) and backward variables S(¢,u) within
the limited region, which greatly reduces memory consump-
tion in training. Moreover, the restricted alignment prevents
the model from using unlimited context to produce the predic-
tion, which leads to faster token emission for streaming infer-
ence. The CIF module is lightweight and fast, and thus can be
jointly optimized with RNN-T from scratch, without great addi-
tional computation overhead. Results on the public AISHELL-1
datasets and non-public large-scale in-house data demonstrate
that BAT achieves significant memory and latency reduction
while maintaining recognition accuracy.

The paper is organized as follows. Section 2 outlines re-
lated work. Section 3 details the method of the boundary-aware
transducer. Experiments are shown in Section 4. Section 5 dis-
cusses the limitations of the method and future works. Section
6 gives the conclusion.

2. Related work

Reducing the memory usage for RNN-T training by perform-
ing the forward-backward calculation on a reduced lattice has
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been explored in several previous works. Alignment Restricted
RNN-T (Ar-RNN-T) [5] proved that it’s possible to restrict re-
gions for each token using a pre-trained hybrid ASR model,
which leads to less memory usage. In the recently proposed
pruned RNN-T [4], the pruned boundary is generated by firstly
computing the forward-backward algorithm on a “trivial” joint
network, and then selecting the (t, u) pairs which contribute
most to the final loss based on the output of the “trivial” joint
network.

For reducing the emission latency, using a pre-generated
alignment to constrain or guide the RNN-T training is also
found to be beneficial. In these works, an external low-latency
acoustic model (typically a hybrid model) is required to pro-
vide the frame-wise alignment. After that, the emission latency
is penalized by masking out the alignment paths exceeding the
predetermined threshold delay on the RNN-T lattice [5, 10], or
using an auxiliary loss [12]. Recently, sequence-level emission
regularization methods propose to reduce latency by modify-
ing the RNN-T loss to find paths tending to predict vocabulary
tokens instead of blanks [9, 13], without an external alignment.
Nevertheless, the path may not be optimal for ASR due to a lack
of alignment information, which can degrade the ASR accuracy
severely [14, 13].

Inspired by the previous studies, boundary-aware trans-
ducer tries to achieve memory and latency reduction at the same
time, based on the alignment information. The major differ-
ences from previous works are 1) in BAT, the alignment in-
formation is generated on-the-fly using a lightweight and fast
CIF module, which is jointly optimized with the RNN-T, thus
not requiring a pre-trained (hybrid) model to obtain the token
alignment. 2) the alignment generated by CIF is monotonic and
continuous. Thus, there is no need to apply monotonic and con-
tinuity constraints to the token boundary, as pruned RNN-T did.
3) we give a thorough analysis on both memory usage and la-
tency for our method and demonstrate its effectiveness.

3. Method
3.1. RNN-T loss

In the training stage, the RNN Transducer (RNN-T) model [1]
aims to maximize the log-probability of a conditional distribu-
tion over the target token sequences y = (y1,¥y2,...,yv) € Y
given the input sequence x = (z1, Z2, ..., TT):

L = —logPr(y|x) = —log Z Pr(alx)
acB~1(y)
where a = (a1, a2, ...,ar+v) € Y U {¢} is the blank label ¢
augmented alignment sequence, and the mapping B is defined
by removing ¢ in the input sequence.
Pr(alx) is further factorized as
T+U
Pr(alx) = Z Pr(ailhe;, gu;) e
i=1
where h = (h1, ha, ..., hr) = Enc(x) is the high-level rep-
resentation produced by the encoder, and g, is the prediction
vector computed by the prediction network,

2
, with the convention yo = ¢. The probability Pr(:|h¢, g..) is
typically implemented as the output of the joint network:

Pr(-|ht, gu) = softmax[W°“* tanh(W"“h,+ WP % g, +b)]
©)]

gu = PredictNet(y(o.u_1)
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To optimize the transducer objective, Pr(y|x) and gradi-
ents are calculated using the efficient forward-backward algo-
rithm [1]:

Pr(y|x) = Z a(t,w)B(t,u),¥n:1<n<T+U
(t,u):t+u=n
t,u+1),if a = yuy1,
Pr(y[x) B( ) ! Yut1
=a(t,u){ Bt +1,u),if a = ¢,

OPr(alht, gu
(alhe, gu) 0, otherwise.
where «(t, u) is the forward variable, defining the probability
of outputting ., during h[;4), and §(¢,u) is the backward
variable, defining the probability of outputting y[, 11.¢7) during
his.). Denote

y(t, u) = Pr(yutilhe, gu)

¢(t7 u) - Pr(¢|ht7 gu)

Then the forward variables and backward variables can be cal-
culated recursively using

a(t,u) = a(t —1,uw)e(t —1,u) + alt,u — 1)y(t,u — 1)

B(t,u) = B+ 1,u)d(t, u) + B(t,u+ Dy(t, u)
C)
It can be seen that RNN-T loss computation can consume a
lot of time and memory because it has to compute y(¢, ) and
@(t,u) forall 0 < ¢ < Tand 0 < u < U on a lattice of shape
(N, T, U, V).

3.2. Boundary aware training with CIF alignment

In BAT, we use continuous integrate-and-fire (CIF) [11] to gen-
erate the monotonic alignment between the acoustic signals
and token sequences and use it to restrict the paths being op-
timized during training, as illustrated in Fig. 2. The pipeline of
boundary-aware training is detailed below.
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Figure 2: Output probability lattice defined by the joint network
output. (a) is the full lattice of standard RNN-T, and (b)(c)(d)
are restricted lattices with different Rq and R, given the CIF
alignment C = [1,1,1,2,2,3,3,4,4,4].

CIF. Given the encoder output h = (hq, h2, ..., hr), CIF
predicts the weights w = (w1, w2, ..., wr) using
w = Sigmoid(Linear(Conv(h))) (%)

Then, it forwardly accumulates the weights and integrates the
encoder outputs until the accumulated weight reaches a given
threshold Bcir, which means a token boundary is located. It
then instantly fires the integrated acoustic information for token



integrated encoder output

encoder output

<03 ﬁ.s x(iﬁ xo.llj;Lxlo.z ﬁ xo.ﬁo‘s Ijii xo.ﬁl
0.3 0.3 0.3 0.3 0.6 0.5 0.5 0.2

weights

accumulated weights 0.3 0.6 09 12 18 23 28 30
accumulated weights after firing 0.3 0.6 0.9 0.2 0.8 0.3 0.8 0
token index 1 1 1 2 2 3 3 3

Figure 3: Token boundary generation with CIF. The weights
have been scaled to match the target token number (3) and the
threshold Bcrr is 1.

prediction and updates the accumulated weights. In the training

stage, the weights w are scaled by ﬁ so that the predicted
t=1%

length of the token sequence is equal to the length of the target

sequence and the model can be optimized using a simple cross-

entropy (CE) loss Lcir—cE, and quantity loss term

T
Zwth

t=1

(6)

Lcir-qQua =

is added to the total loss to encourage the model to predict the
length of labels closer to the targets. We adopt a fast parallel
implementation and a lightweight neural net configuration for
the CIF module so the additional parameter and computation
overhead introduced by CIF is insignificant.

Token boundary generation. Given w, we obtain the CIF
alignment C = (C1, Ca, ..., Cr) sequence simply using

C = ceil(cumsum(w))

)

, where C; is defined as the index of the token to which h; as-
signs. ceil() is the ceiling function and cumsum() is the cu-
mulative sum operation, as illustrated in Fig. 3. Note that the
alignment given by eq. 7 is naturally monotonic (C¢+1-C¢ > 0)
and continuous (C¢+1-C; < 1) so the ad hoc operations to make
the pruning boundary valid in pruned RNN-T [4] are avoided.

Boundary aware training. In boundary-aware training,
we assume that y (¢, ) and ¢ (¢, u) with non-zero gradients are
located in a small neighboring region of CIF alignment. Thus,
instead of considering y(¢,u) and ¢(¢,u) over all U tokens at
each time step ¢, we only compute y(¢, u) for

C:—Rag<u<Ci+ Ry
,and ¢(t, u) for
Ct—Ri<u<Ci+R,+1
. On the contrary, y (¢, u) for
u€{ulu<C —Rqgoru>Ci+ Ry}
and ¢(t, u) for
u€{ulu<C —Rqoru>Ci+ R, +1}

will be treated as 0. Rgq and R, are two hyper-parameters
that control the ranges of the tokens that will be evaluated for
time step ¢. Thus, the output lattice shape becomes (N, T,
R4 + R, + 2, V), which greatly reduces memory consump-
tion. In the training stage, the CIF module is jointly optimized
with the boundary-aware transducer (BAT) and the total training
objective is defined as follows:

L = Lpat + Lcir-cE + Lcir—qua
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4. Experiments
4.1. Experiment settings

We conduct our experiments on the openly available 170-hour
Mandarin AISHELL-1 [15] dataset a 30000-hour in-house in-
dustrial Mandarin dataset. The code and pre-trained model will
be released upon publication of the paper.

On AISHELL-1, we use 80-dim filterbanks as input fea-
tures. SpecAugment [16] and 3-fold speed perturbation are
used for data augmentation. The encoder is a 12-layer con-
former [17]. The convolution kernel size is 31, and the num-
ber of attention heads, attention dimension, and feed-forward
dimension are 8, 512, and 2048 respectively. We perform frame
downsampling on 1) the input feature by a factor of 4 using
stride convolution and 2) the output of the encoder by a fac-
tor of 2 to reduce the training and inference memory consump-
tion. The prediction network is a 1-layer LSTM with 512 hid-
den units. The modeling units are 4233 Chinese characters. The
CIF module consists of a 1D convolution layer with 512 chan-
nels and a linear layer. The total number of parameters is about
90M. For the streaming model, we adopt the causal convolu-
tion [18] and chunk attention based conformer. The convolution
kernel size is 15 and the attention chunk size is 16. Other con-
figurations are the same as the non-streaming model. We train
the model from scratch for 100 epochs and average 10 check-
points which perform best on the development set to obtain the
final model. At the inference stage, we use beam search with a
beam size 10, and no extra language model is used.

On the 30000-hour in-house dataset, we stack the consecu-
tive frames within a context window of 7 (3+1+3) to produce the
560-dimensional features and then perform 6 x down-sampling
on the input frames. The modeling units are 3445 Chinese char-
acters. The model configurations are the same as the AISHELL-
1. We train the model for 20 epochs and average 5 checkpoints
which perform best on the development set.

4.2. Latency metrics

We use two metrics to characterize the latency for streaming
RNN-T and streaming BAT.

Average last token Emitting Time, avg ET. The average
time when the last token is emitted for all utterances in the test
set.

Partial Recognition (PR) Latency. The difference of the
time (1) when the last token is emitted and (2) when a user
finishes speaking, which is estimated by the alignment from
the conventional model. Following [9], we report both 50-th
(medium, PR50) and 90-th (PR90) percentile values of PR.

4.3. Results

Table 1: The non-streaming RNN-T and boundary-aware trans-
ducer (BAT) results on AISHELL-1.

model | R; R, | devCER test CER
RNN-T - - 4.86 5.22
BAT 1 1 5.05 5.45
BAT 2 2 4.86 5.32
BAT 3 3 4.82 5.28

For the non-streaming model (Table 1), BAT and RNN-T
perform comparably in accuracy, especially when R4 and R,



Table 2: The streaming RNN-T and boundary-aware transducer (BAT) results on AISHELL-1. ET is the last token emitting time. PR is
Partial Recognition Latency. FE is short for FastEmit. ) is the FastEmit hyperparameter.

Exp ID | model Ri R, | devCER test CER | avg ET (ms) PR50 (ms) PR90 (ms)
1 RNN-T - - 5.80 6.96 4633 100 230
2 RNN-T + FE, A = 0.002 - - 6.11 7.44 4517 (-116) -20 (-120) 120 (-110)
3 RNN-T + FE, A = 0.004 - - 6.04 7.67 4416 (-217) -110 (-210) 30 (-200)
4 BAT 1 1 5.89 7.63 4483 (-150) -10 (-110) 120 (-110)
5 BAT 2 2 5.88 7.35 4523 (-110) 10 (-90) 140 (-90)

are relatively large (R4=3 and R,=3). A memory-CER trade-
off is observed as smaller Rq4 and R, lead to less memory usage
but higher CERs.

For the streaming model (Table 2), we report results for
BAT and RNN-T with and without FastEmit. It is shown that
1) similar to FastEmit [14, 13], boundary-aware training lead to
accuracy degradation compared to the baseline RNN-T, 2) BAT
achieves comparable CER-latency trade-offs to FastEmit, while
BAT is more memory-efficient in training.

To better visualize the effectiveness of boundary-aware
training in improving emission latency, we show the alignment
for an utterance in the AISHELL-1 test set given by RNN-T
and BAT in Fig. 4. It is shown that boundary-aware training
encourages a faster emission of tokens at inference.

alignment

1 3 5 7 9111315171921 23252729 313335373941434547495153

———RNN-T_streaming BAT_streaming

Figure 4: Alignment of BAT (Rq=2, R.=2, colored in orange)
and RNN-T (blue) for the streaming model. The Y-axis is the
non-blank token emitted by the model, and the X-axis is the time
step.

The results of the in-house 30000-hour task (table 3) prove
that the proposed method can be successfully applied to RNN-T
training on large-scale data.

Table 3: The results of RNN-T and BAT (Rq=2, R.,=2) on the
industrial 30000-hour task.

model | streaming CER
RNN-T N 8.08
BAT N 8.12
RNN-T Y 8.75
BAT Y 8.87

4.4. Time and memory usage

We benchmark the time and memory usage on the AISHELL-1
training data. The experiments are conducted on 1 Tesla V100
GPU. The model configuration is the same as the AISHELL-1
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non-streaming model in Sec. 4.1. We sort utterances by the in-
put feature lengths and set the number of frames (after padding)
in a batch per GPU to 50k. Table 4 compares time and peak
memory usages ' for RNN-T loss calculation with warp-rnnt?,
pruned RNN-T? and BAT. We report stats for joint network and
loss calculation as the encoder and prediction network calcula-
tions for the three implementations are the same. For pruned
RNN-T, the time and memory statistics includes the trial joint
network computation, and the number of indexes that will be
evaluated for any time step (S in the original paper) is set to 5 by
default. For BAT, the time and memory statistics for CIF com-
putation are included, and Ry = R,=2. It is shown that both
pruned RNN-T and BAT reduce time and memory consumption
drastically. BAT outperforms pruned RNN-T, which indicates
that pruning bounds generated by CIF are more efficient than
that in pruned RNN-T.

Table 4: Time per batch (ms) and peak memory usage (GB) for
RNN-T, pruned RNN-T and BAT (Rq=2, R, =2).

model \ time (ms) peak mem usage (GB)
warp-rnnt 230 16.9
pruned RNN-T 94 74
BAT 85 6.4

5. Limitations and future work

In BAT, the token boundary information is only used in the
training stage, and the inference of BAT is exactly the same
as the standard RNN-T. In fact, the CIF alignment could also be
used to guide and speed up the RNN-T inference (e.g. perform
frame skipping [19] based on the CIF weights), which would be
our future work.

6. Conclusions

In this paper we propose boundary-aware transducer (BAT) for
memory-efficient and low-latency ASR. Different from previ-
ous works which utilize alignment references generated from an
external pre-trained model, BAT can be end-to-end optimized,
as the alignment for BAT is generated on the fly efficiently. Ex-
tensive experiments demonstrate that compared to RNN-T, BAT
reduces time and memory consumption significantly in training,
and achieves good CER-latency trade-offs in streaming infer-
ence.

The memory allocating information is collected using the pytorch
max_memory_allocated APL.

Zhttps://github.com/1ytic/warp-rnnt/tree/master/pytorch_binding

3https://github.com/danpovey/fast_rnnt
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