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Abstract

Defensive communication is known to have detrimental
effects on the quality of social interactions. Hence, recog-
nising and reducing defensive behaviour is crucial to improv-
ing professional and personal communication. We introduce
DefComm-DB, a novel multimodal dataset comprising video
recordings in which one of the following types of defensive
communication is present: (i) verbally attacking the conver-
sation partner, (ii) withdrawing from the communication, (iii)
making oneself greater, and (iv) making oneself smaller. Sub-
sequently, we present a machine learning approach for the au-
tomatic classification of DefComm-DB. In particular, we utilise
wav2vec2, autoencoders, a pre-trained CNN and openSMILE
for feature extraction from the audio modality. For the text
stream, we apply ELECTRA and SBERT. On the unseen test
set, our models achieve an Unweighted Average Recall of
49.4 % and 52.2 % for the audio and text modalities, respec-
tively, showing the feasibility of the introduced challenge.
Index Terms: speech processing, defensive communication,
computational paralinguistics, Transformers

1. Introduction

Effective communication plays an essential role in various as-
pects of human life, including personal and professional devel-
opment, relationships, and overall well-being. Positive interper-
sonal communication helps to establish understanding and trust
between individuals, making interaction more harmonious [1].
However, due to its complexity, interpersonal communication
can fail in many ways. Contributing factors can include cul-
tural and linguistic differences, societal norms, roles and val-
ues [2], stress level, mental health concerns, and personal cir-
cumstances [3]. In addition, various communication flaws can
cause messages to be misinterpreted and expressed in an inef-
fective manner [4].

One particular form of behaviour in communication is de-
fensiveness. It is often characterised by hostile, aggressive, or
passive-aggressive behaviour [5] and can manifest as verbal and
nonverbal responses [5] and actions directed toward reducing
anxiety [6]. According to Stamp etal. [7], defensive behaviour
comprises three parts: a self-perceived flaw that one refuses to
acknowledge, sensitivity to that flaw, and a perceived or actual
attack by another individual focused on that flaw [7]. This type
of behaviour can reduce the effectiveness of communication [8]
and cause defensive or aggressive responses in return which can
lead to a detrimental cycle of poor communication [5]. Further-
more, defensiveness can negatively affect the quality and satis-
faction of relationships and romantic partnerships by increasing
the number of conflicts [9, 10]. Moreover, it has been identi-
fied as one of the key factors in marriage breakdown [9]. In

the workplace, it can have a negative impact on the quality of
leader-member interaction which is associated with higher lev-
els of burnout and lower job satisfaction [11]. It is thus im-
portant to understand the dynamics of defensive communica-
tion and be able to quickly identify when it emerges and steer
conversations constructively. By detecting defensive behaviour,
individuals can navigate conflicts, resolve them, improve com-
munication skills, and interact better in society. Therefore, it is
desirable to have systems in place that can assist in this process.

So far, prior studies on this topic are non-computational
and mainly questionnaire-based. Further, they have primar-
ily focused on defence mechanisms, a phenomenon that un-
derlies defensiveness. Various tools have been developed to
study defensive behaviours that a person may not be aware of,
based on Freud’s idea that an observer can reliably determine
them [12]. Such tools include the Lerner Defence Scale [13]
based on the Rorschach inkblot test and a method developed
by Cooper etal. [14] that measures 15 defences from three
categories. Following the hierarchical organisation of defence
mechanisms proposed by Vaillant etal. [15], Perry etal. [16]
developed the Defense Mechanisms Rating Scale [16] and its
computerised Q-sort version Q-sort based Defense Mechanisms
Rating Scale (DMRS-Q) [17], which provide quantitative and
qualitative scores reflecting a person’s defensive functioning.

To the best of our knowledge, there are no approaches for
automatic classification of defensiveness and defence mecha-
nisms in communication. Other studies which are mainly from
the field of computational paralinguistics [18, 19] explore each
individual’s character traits such as Big Five, insecurity, social
anxiety, and feeling threatened that can contribute to defensive
behaviour [7].

To this end, in a first attempt to automatic defence mecha-
nism classification, we introduce a novel dataset for defensive
communication (cf. Section 2) and provide machine learning
solutions for its automatic classification (cf. Section 3). Appli-
cations of our research include but are not limited to the fields
of conflict resolution [20], communication training [21], and
psychology [22].

2. Dataset

We have collected a novel Multimodal Defensive
Communication Database, denoted as DEFCOMM-DB
from YouTube. It comprises genuine non-acted dialogues
between English-speaking individuals in ‘real-world’ settings
that feature one of the defensive behaviours outlined in
Birkenbihl’s model of communication failures [21]:

1. Attacking the conversation partner (class Attack): videos that
depict individuals actively attacking verbally, blaming the
other person, or shifting the other person’s attention to them-
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selves.

2. Withdrawing from the communication (class Flight): videos
where people refuse to respond, withdraw from the conversa-
tion or change the topic or focus.

3. Making oneself greater (class Greater): videos that depict
individuals boasting, self-justifying in an aggressive manner,
denying accusations, exhibiting a sense of dominance or su-
periority, or expressing indignation.

4. Making oneself smaller (class Smaller): videos that display

individuals engaging in self-deprecation, self-blame, exhibit-
ing a sense of guilt, apologising, and expressing feelings of
vulnerability or worthlessness.

Initially, we collected 431 data points. Next, we carefully
checked the collected videos to ensure that they aligned with
Birkenbihl’s model [21] and that no samples were repeated.
After this evaluation, a final set of 261 data points was cre-
ated. Key statistics on the dataset are provided in Table 1.
DEFCOMM-DB features a variety of video topics, including in-
terviews with celebrities and professional athletes, political de-
bates, legal trials, TV shows, and video footage obtained by pa-
parazzi, among others. The situations, number of participants,
gender, age, and ethnicity vary from scene to scene. From each
video, we retrieve audio, visual, and textual modalities. In this
paper, we focus on the audio modality and the speech transcrip-
tions. We have made DEFCOMM-DB available for academic
researchers'.

2.1. Search Parameters

We based our search for suitable YouTube videos on the as-
sumption that defensive behaviour can be identified by cer-
tain verbal and non-verbal signs. Verbal indicators of defen-
sive communication may include making excuses, denying re-
sponsibility [23], shifting blame, interrupting others [10], and
using loud, fast, aggressive, or monotonous and evaluative
speech [24]. Non-verbal cues of defensiveness may include
closed body posture, avoidance of eye contact, specific head
positioning, and facial expressions that convey hostility or dis-
interest [S5]. To find these cues, we look for situations that
could potentially involve conflict. Examples of search queries
included but were not limited to: “bad interviews”, “heated
sports interviews”, “celebrities freak out”, “emotional court
speeches”, “heated debates”, “bragging”, “ refusal
to answer”, and “painful conversations”.
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2.2. Annotation

To build the gold standard, the video recordings were annotated
by 11 participants (5f and 6 m) with a mean age of 25 years
(£ 4.9 years). Among them, four are Al researchers, one mas-
ter’s student with a background in psychology, and six are un-
dergraduates studying social science and psychology (2), com-
puter science (2), economics (1), and management (1). Prior to
the annotation process, the participants were provided with ver-
bal and written instructions outlining the purpose and goals of
the study, a detailed description of the four classes that needed
to be labelled, examples of videos featuring targeted reactions,
and technical information about the labelling process. The an-
notators then assigned each data point to one of the following
labels: Attack, Smaller, Greater, and Flight. Additionally, they
could select if the video does not have any of the targeted reac-
tions and leave a comment if they noticed some issues.

Thttps://zenodo.org/record/7706919
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Table 1: Statistics on DEFCOMM-DB: number of video clips,
mean duration (), standard deviation (o), minimum, maxi-
mum, and total duration of collected videos per class.

Label #videoclips p[s] o[s] min[s] max([s] X duration [s]
Attack 112 8 9 2 46 949
Flight 57 9 8 2 62 494
Greater 45 9 6 2 25 416
Smaller 47 12 8 3 49 556
Total 261 9 8 2 62 2415

2.2.1. Inter-Annotator Agreement

A large degree of subjectivity may be involved in the annota-
tion process, even if it is based on clear instructions. Therefore,
to ensure the reliability of the dataset, it is necessary to cal-
culate the level of agreement between annotators. To do this,
we use Krippendorf’s alpha («) [25]. For our collected anno-
tations, we obtain an « value of 0.63, indicating the difficulty
of the labelling and substantial confusion between annotators.
As shown in Figure 1a, there is a more prominent tendency for
confusion between the classes Greater and Attack, as well as
between Smaller and Flight. Despite this confusion, it can be
noted that overall, the annotators tend to label samples in a sim-
ilar manner. In Figure 1b, we also provide the agreement be-
tween all annotators. Upon completion of the annotation pro-
cess, videos are assigned labels based on the majority agree-
ment among participants.
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Figure 1: Co-occurrence matrix of annotators’ labels per class
(a), confusion matrix showing agreement among annotators (b).

3. Approach

After sourcing and preparing DEFCOMM-DB (cf. Section 2),
we conduct a preprocessing step for both the audio and text
modalities (cf. Section 3.1). Subsequently, we extract deep rep-
resentations and expert-designed features from each modality
(cf. Section 3.2). Using the obtained representations, we train
machine learning models and fuse the best-performing models
to check for their complementarity (cf. Section 4).

3.1. Preprocessing

For audio pre-processing, we first conduct speaker diarisation
using the open-source pyannote.audio toolkit [26]. Afterwards,
we normalise all audio tracks to ensure consistent loudness and
convert them to 16 kHz and mono/16 bit. As for text, the pro-
vided subtitles come without any punctuation. Hence, we apply
punctuation restoration [27] to segment each video’s subtitles
into sentences. In case there are several subjects in a video, we
only keep the audio track and transcription of the person that is



communicating defensively in the respective situation such that
every data point corresponds to exactly one person.

3.2. Feature Extraction

We utilise a set of open-source deep learning methods for
representation learning and feature extraction from the au-
dio (cf. Sections 3.2.1 to 3.2.4) and text (cf. Sections 3.2.5
and 3.2.6) modalities of the recordings in DEFCOMM-DB.

3.2.1. wav2vec2

Wav2Vec 2.0 [28] is a Transformer model pretrained for auto-
matic speech recognition which has successfully been applied
to speech emotion recognition [29]. We utilise a base version
with 12 layers and about 95M parameters, trained on 960 hours
of data from the Librispeech [30] dataset’. We extract 768-
dimensional embeddings from the audio files by passing them
to the pretrained model and averaging the resulting representa-
tions of its final layer.

3.2.2. auDeep

AUDEEP [31, 32] is employed for unsupervised representation
learning from audio data. We extract Mel-spectrograms (128
Mels and Hanning window of width 80 ms with 50 % overlap)
from raw waveforms in the dataset, followed by clipping power
levels below four given thresholds {—30, —45, —60, —75} dB
to eliminate background noise. Next, distinct Recurrent Neural
Network (RNN) autoencoders (2 hidden Gated Recurrent Unit
(GRU) layers each with 256 units, unidirectional encoder, bidi-
rectional decoder) are trained for 64 epochs with a batch size
of 16, a learning rate of 0.001 and a keep probability of 80 %
on each of these sets of spectrograms, and the learnt represen-
tations of each spectrogram are extracted as feature vectors of
size 1024. Finally, these feature vectors are concatenated to
form the final feature vector of size 4096.

3.2.3. DeepSpectrum

Additionally, DEEPSPECTRUM is applied to obtain deep audio
representations utilising pre-trained Convolutional Neural Net-
works (CNNs) [33]. First, audio signals are transformed into
Mel-spectrogram plots (viridis colour map, 64 Mels and Han-
ning window of width 32 ms with 50 % overlap). Using a slid-
ing window of 1s and overlap of 500 ms, the generated spec-
trograms are then forwarded through a DENSENET121 archi-
tecture (weights pre-trained on ImageNet), and the activations
of the penultimate fully connected layer of the network are ex-
tracted, resulting in a 1024 dimensional feature set.

3.2.4. eGeMAPS

The expert-designed extended Geneva Minimalistic Acous-
tic Parameter Set (eGeMAPS) feature set [34] comprises 88
speech-related paralinguistic features and has been successfully
applied in speech and affective computing tasks before [35, 36].
We extract the eGeMAPS features for every 2 s audio segment
via OPENSMILE [37] using the standard configuration with a
frame size of 1s and a step size of 500 ms.

3.2.5. ELECTRA

We select a pretrained ELECTRA model [38], which has been
used successfully in sentiment analysis [38] and emotion recog-

Zhttps://huggingface.co/facebook/wav2vec2-base-960h
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Table 2: Label distribution of each class in the speaker-
independent training, development, and test partitions.

Partition Attack  Flight Greater Smaller Total # Clips
Train 441% 20.7% 17.0 % 181% 720% 188
Devel 378% 21.0% 18.9 % 162% 142% 37
Test 41.7% 222% 16.7 % 194% 13.8% 36

nition [39]. Specifically, we use the base version with 12 layers
to generate 768-dimensional sentence embeddings by extract-
ing the final layer’s representation of the special CLS token.

3.2.6. Semantic Similarity

To obtain more interpretable textual features, we opt for 2 refer-
ence sentences for each of the 4 classes: “I am attacking you”
and “You are not as great as you think” for the class Attack,
“I am ending this conversation” and “I can not compete with
you” for the class Flight, “I am superior to you” and “I am as
great as you, if not greater” for the class Greater, and “I surren-
der to you” and “Please do not hurt me” for the class Smaller.
These sentences were inspired by Birkenbihl’s definition of de-
fensive communication [21]. We then utilise 4 pretrained sen-
tence embedding models (all-mpnet-base-v2, all-distilroberta-
vl, all-MiniLM-L12-v2, MiniLM-L6-H384-uncased) from the
SBERT framework [40] to compute cosine distances between
the representations of all sentences in a video and these 8 refer-
ence sentences. Each video is represented by a 32-dimensional
feature vector computed through a weighted sum of sentence
cosine distances, with weights based on sentence token count.

4. Experimental Settings

Partitioning: To reduce model bias toward specific speakers,
we implement a speaker-independent partitioning strategy and
divide the data into three training, development, and test sets.
We further ensure that each set contains an approximately equal
number of data points for each class (cf. Table 2).

Model training: We use Support Vector Machines (SVMs)
with UAR as the evaluation metric. During the training, we
optimise each SVM model on the development data split us-
ing the grid search hyperparameter optimisation and test the
best-performing models on the unseen test partition. Specifi-
cally, we search for the optimal value of SVM’s cost param-
eter (C) in the range of between 10~7 and 10* on a logarith-
mic scale. Additionally, we test linear, Radial Basis Func-
tion (RBF), Sigmoid, and polynomial kernels. For the poly-
nomial kernel, we further search for the optimal degree within
the range of 2, 3, 4, and 5. Regarding the features ex-
tracted per segment, a majority voting over all segment-level
predictions is conducted to obtain the class prediction for a
video. Since the dataset has a slight imbalance in class distri-
bution, we further apply the Synthetic Minority Over-sampling
Technique (SMOTE) [41] with its default parameters (ran-
dom_state=seed_of_the_current_experiment, k_neighbors=5) to
the extracted features to address this issue. Every experiment is
repeated with five fixed seeds.

Model fusion: Subsequently, we apply a simple late fusion ap-
proach to the trained models, where each model’s class predic-
tion is weighted according to the model’s UAR on the develop-
ment set. We experiment with the late fusion of both the audio-
based models only and all models.

3https://huggingface.co/google/electra-base-discriminator



Table 3: Overall and class-wise performance of the SVM models trained on clip-level features. Every experiment is repeated with
five fixed seeds. The mean results over five seeds are provided. The standard deviation is given in parentheses. The best overall and
class-wise performance on the test set for each modality is boldfaced. The best scores on the test set across all modalities (incl. late
fusion) are marked with light grey shading. The chance-level is 25.0 % Unweighted Average Recall (UAR).

Overall [% UAR 1] Attack [% Recall 1] Flight [% Recall 1] Greater [% Recall 1] Smaller [ % Recall 1]
Method dev test dev test dev test dev test dev test
Audio Modality
w2v-base-960h 51.1(£0.0) 43.7(£0.0) 57.1(£0.0) 46.7(£0.0) 40.0(£0.0) 37.5(%+0.0) 57.1(+0.0) 33.3(£0.0) 50.0 (£0.0) 57.1(+0.0)
AUDEEP (fuse) - 447(£29) 43.6(£43) 65.7(£54) 733(£94) 66.0(£49) 40.0(£9.4) 17.1(£16.7) 26.7(£133) 30.0(+12.5) 343 (£21.4)
DS (DENSENETI21)  49.8(£0.7) 49.4(:15)  77.1(£2.9) 66.7(£0.0) 60.0(£0.0) 40.0(£50) 28.6(+0.0) 36.7(£6.7) 333(£0.0) 54.3(£57)
cGeMAPS  55.0(400) 47.6(£0.0) 57.1(+00) 60.0(£0.0) 70.0(+£0.0) 375(£00) 429(£0.0) 500(£0.0) 50.0(£00) 429 (£0.0)
Text Modality
ELECTRA 54.6(£1.2) 43.2(£6.5) 72.9(£11.4) 44.0(+6.8) 56.0(£4.9) 35.0(£9.4) 42.9 (£9.0) 56.7 (£8.2) 46.7(£6.7) 37.1(£19.4)
Semantic Similarity  65.5 (£0.7) | 522(£20)  522(£35) 36.0(£6.8) 540(£49)  50.0(E79) 88.6(£57) | 80.0(£67) 66.7(£0.0) 429 (£0.0)
Model Fusion
All audio models 58.9(+£1.9) 52.0(£4.0) 72.9(+£29) 72.0(£5.0) 76.0(£4.9) 45.0(£6.1) 40.0 (£5.7) 36.7(£6.7) 46.7 (£6.7) 54.3 (£5.7)
‘Allaudio & textmodels  60.8 (£3.0) 46.5(£3.3) 843(£7.0) | 733(£60) 68.0(£40) 25.0(£7.9) 343(£7.0) 333(£183) 56.7(£8.2) 543 (£57)
5. Results 6. Limitations and Discussion

Table 3 shows the classification results achieved by all eval-
uated models and their intra- and cross-modality late fusions.
We report the means and standard deviations of the per-class
recalls and the overall UAR computed over the five seeds for
each experimental configuration. The overall best result can be
found with a text-based model trained on semantic similarity
features, achieving 52.2 % UAR for classifying the four types
of defensive communication on the test set. In comparison, the
best audio model utilising DEEPSPECTRUM features performs
slightly worse at 49.4 % UAR.

However, the superiority of the text modality over the au-
dio modality cannot be observed globally. For one, ELECTRA
features only perform on par with the worst audio-based model
at 43.2 % UAR. Furthermore, per-class recalls reveal that the
semantic similarity approach owes its performance advantage
to substantially higher detection rates of the Flight and Greater
classes compared to all other models. The strategy of making
oneself greater is detected with 80.0 % whereas both the ELEC-
TRA (text) and eGeMAPs (audio) model fall behind at recalls
of 56.7 % and 50.0 %, respectively. On the other hand, an active
and confrontational strategy (Attack) is consistently detected
better via the audio modality, with a top recall of 73.3 %, com-
pared to 36.0 % achieved by the semantic similarity approach.
From an affective computing point of view, this strategy will
very likely coincide with higher degrees of arousal which can
be detected from acoustic parameters such as increased loud-
ness and pitch.

Finally, fusing predictions of all audio models increases the
performance of this modality to be on par with the semantic
similarity model at 52.0 %. However, adding the predictions
obtained from the text-based models to the late fusion has a
negative impact, dropping the overall UAR to 46.5 %. Nev-
ertheless, based on our observations on per-class performance
differences between audio and text-based models, the comple-
mentarity of the two modalities should be investigated further,
e.g., by utilising different and more sophisticated fusion and
multi-modal learning strategies.
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Limitations of the current study can be found in the quantity and
quality of the collected dataset. For one, certain types of defen-
sive communication were more prevalent than others, resulting
in a class imbalance. Furthermore, high-quality subtitles were
not consistently available — a data-related issue which could be
addressed by manual transcriptions. Lastly, some videos con-
tained more than one defensive reaction at once, leading to diffi-
culties in the labelling process. In the future, we plan to improve
upon this issue by applying a multi-label approach and further
creating a robust set of rules that can help to better distinguish
the different classes.

7. Conclusions and Future Work

In the presented study, we investigated the feasibility of us-
ing machine learning to automatically detect four forms of de-
fensive communication based on a popular model proposed by
Birkenbihl [21]. For this purpose, we collected and annotated
a database of 261 ‘real-world’ video samples containing de-
fensive communication from YouTube. We then evaluated an
assortment of audio and text-based classification systems, util-
ising current state-of-the-art feature representations. Results
showed that the four considered types of defensive communi-
cation could be automatically classified with a UAR of up to
52.2%. Moreover, we observed that the four communication
types differ in how distinctly they manifest across modalities.

In addition to addressing the limitations outlined in Sec-
tion 6, future work should go into a deeper analysis of the un-
derlying psychological, social and environmental factors such
as emotional state, character traits, intentions, and relations be-
tween conversation partners that contribute to defensive com-
munication. Apart from that, other classifications of defensive
communication, such as the widely supported framework pro-
posed by Gibb [5], should be adopted and compared.

Finally, we aim to make our algorithm suitable for deploy-
ment to embedded devices, utilising different techniques for
model compression and hardware acceleration [42].
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