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Abstract
Unsupervised anomalous sound detection typically involves us-
ing a classifier with the last layer removed to extract embed-
dings. After that the cosine distance between train and test
embeddings as anomaly score is used. In this paper, we pro-
pose a new idea which we call variational classifier that force
the embeddings to follow a distribution imposed by design that
can depend on the class of the input among other factors. To
achieve this goal, in addition to the cross-entropy, we add to the
loss function the KL divergence between these distributions and
the one followed by the training embeddings. This enhances
the ability of the system to differentiate between classes and
it allows us to use sampling methods and to calculate the log-
likelihood of a test embedding in the train embeddings distri-
butions. We tested this proposal on the DCASE 2022 Task 2
dataset and observed improvements in both classification and
unsupervised anomaly detection, which is the primary task.
Index Terms: variational classifier, anomalous sound detec-
tion, embeddings extractor

1. Introduction
Unsupervised Anomaly Detection is the task of distinguishing
between normal and anomalous data using only normal data for
design. The fact of dispensing with anomaly data for the de-
sign is key since, as the name suggests, it is difficult to obtain
this type of data. The common objective of all anomaly detec-
tion systems is to obtain an output value called anomaly score,
which determines whether an input is normal or anomalous de-
pending on whether this value is below or above, respectively, a
threshold [1, 2]. To design this type of system, a common solu-
tion is to design a system capable of obtaining embeddings con-
taining the semantic information of the inputs. Subsequently,
the Euclidean or cosine distance between the training and test
embeddings are often used as the anomaly score [3]. Thus, since
the training embeddings are normal, the distance between the
test and training embeddings is expected to be higher when the
test data are anomalous than when they are normal. Another
alternative is to design a generative model such as a Variational
Autoencoder [4] or Normalizing Flow [5] to estimate the distri-
bution that the training embeddings follow so that the anomaly
score is the negative likelihood, which is expected to be higher
for the anomalous input embeddings [6, 7]. To build the em-
beddings extractor it is common to train a classifier that distin-
guishes between different types of normal data and to remove
the last layer once this classifier has been trained [2]. In this
work we propose a classifier in which the output of the last layer
is not a unique embedding per input, but rather the parameters
of the distribution followed by the embeddings corresponding
to that input. Thus, by knowing the distribution we can com-

bine the two previous solutions, i.e., we can sample embeddings
from that distribution and compute cosine distances, and we can
also compute the likelihood.

Although the technique we propose in this work is indepen-
dent of the type of data, in this case we use it to detect anoma-
lies in audios. Specifically, we use the dataset of the DCASE
2022 Task 2 challenge, since it is a de facto standard for design-
ing and evaluating Unsupervised Anomalous Sound Detection
systems. This dataset is composed of sounds corresponding to
seven different machines and the challenge proposes a metric
to evaluate the system. On the one hand, DCASE2021 win-
ner combined three different systems to achieve the best possi-
ble performance. The first system obtained x-vectors and cal-
culated the cosine and Mahalanobis distances between the test
embedding and the average training embedding as an anomaly
score. The second system used WaveNet [8] by adding an x-
vector classification head after the dilated convolutions. The
last one used a Normalizing Flow to estimate the distribution of
an n-bin segment of a spectrogram conditioned to the remain-
ing bins [9]. On the other hand, the DCASE2022 winner used a
modified version of MobileFaceNet [10] as embedding extrac-
tor. Subsequently, they used the negative logit and the Maha-
lanobis distance between training and test data as the anomaly
score depending on the machine [11]. As can be seen, the win-
ners of the last few years first use embedding extractors and
then implement different methods to obtain the anomaly scores
from these embeddings. These methods include the cosine and
Mahalanobis distances between train and test embeddings or a
generative model such as a Normalizing Flow. The objective of
this work is to present a monolithic system that allows to cal-
culate the cosine distance and estimate the likelihood of the test
embeddings in the train distributions.

This paper is organized as follows. Section 2 presents the
problem objetive, dataset and evaluation score. Section 3 de-
scribes the proposed approach to solve the problem. The results
obtained are shown in section 4. Finally, in section 5, conclu-
sions are summarized.

2. Problem Description
2.1. Objective

In this paper we present a solution for the DCASE2022 Task
2. The goal of this task is to develop a system capable of dis-
tinguishing between normal and anomalous audios. In order to
design this system, only normal data are used to train it. Be-
sides, the test data may or may not be in another domain than
the training data. Thus, when we have a test data, a priori we do
not know if it is from the source or the target domain. There-
fore, we must use the same threshold for all data regardless of
the domain. This is known as domain generalization [12].
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2.2. Dataset

The DCASE2022 task 2 dataset is composed of data from Toy-
ADMOS2 [13] and MIMII DUE [14] and contains the sounds
emitted by seven machines operating normally and when bro-
ken (abnormally). In addition, for each machine there are
sounds belonging to six sections. A section is defined as a sub-
set of the dataset for calculating performance metrics. The ma-
chines are: ToyCar, ToyTrain, fan, gearbox, bearing, slide rail,
and valve and sections 0 to 5. The recordings are 10 seconds
long, single channel and sampled at 16 kHz. The dataset is
splitted as follows:

Training Dataset: Consists of six sections for each ma-
chine type (Sections 0 to 5). For each section, this dataset is
composed of 990 clips of normal sounds in the source domain
for training, 10 clips of normal sounds in the target domain.

Validation Dataset: It is composed of data from sections
0, 1 and 2 and has 100 normal audios (50 from the source and
50 from the target domain) and 100 anomalous audios (50 from
the source and 50 from the target domain) per section.

Evaluation Dataset: It follows the same distribution as the
validation dataset, but with data from sections 3, 4 and 5.

2.3. Evaluation

To evaluate this task we use the area under the ROC curve
(AUC) and partial AUC (pAUC) [15]. Since this task focuses on
domain generalization, the threshold should be the same regard-
less of the domain of the data, since in the test data we do not
have this information. Therefore, we first obtain the AUCmnd
and pAUCmn, which are the AUC and pAUC with p=10% for
machine m, section n and domain d. Finally, the score Ωm for
a machine m and the final score of the task Ω is defined in 2.

Ωm = h{AUCmnd, pAUCmn : n ∈ S, d ∈ {S,T}} (1)

where S and T are the source and target domains, repectively.

Ω = h{Ωm : m ∈M} (2)

where h is the harmonic mean, S = {0, 1, 2, 3, 4, 5} and M
are the seven machines

3. Proposed Approach
3.1. Input to Classifier

To obtain the inputs to this network, first, we calculate the spec-
trogram (or its variations) of the signal X = {xt}Tt=1, where
xt ∈ RF and F and T are the number of frequency bins and
time frames, respectively. As input to the embeddings extrac-
tor we take five chunks of L frames. During training phase the
initial position of these chunks is chosen randomly and during
the test phase it is chosen equispaced among the F frames. The
configurations of the inputs that return the best performance for
each machine are presented in section 4

3.2. Vanilla Classifier

In the Vanilla Classifier, we distinguish two parts. The first one
is fθ , which is the embeddings extractor and the second one is
gφ, which is the last layer and whose output contains the prob-
abilities of each class. Given an input xi:

zi = fθ(xi) ∈ Rk (3)

yi = gφ(zi) ∈ RC (4)

where zi is the embedding of the input xi, k is the embeddings
dimension and yij is the probability that xi, belongs to class
j ∈ {1, 2, . . . , C}.

The loss function for this classifier is the cross-entropy be-
tween the labels ti corresponding to the input xi and the output
of the classifier yi, so that:

LC(ti,yi) = CE(ti,yi) (5)

3.3. Variational Classifier

In the variational classifier, the aim is that the embeddings are
close to a set of known distributions, so that we can draw sam-
ples from this distribution and also calculate the likelihood of
an embedding in these distributions. Since the objective is to
discriminate between inputs of different classes, we define as
many distributions as classes. In this way, the embedding of
each input will try to follow a distribution depending on the
class. In particular, we choose these distributions to be Gaus-
sian, although the use of different families of distributions could
be studied. In addition, the means of the different distributions
are orthogonal to each other and have magnitude µ. Enforc-
ing that embeddings of different classes tend to be orthogonal
to each other has been found to improve classification perfor-
mance [16]. In addition, the covariance matrix is σ2I in the C
distributions. Therefore, the embedding corresponding to input
xi should be distributed close to a distribution N

(
µti , σ

2I
)

and it is also satisfied that 〈µtj ,µtk 〉 = 0 if tj 6= tk.
To model this, in the variational classifier two other parts

are added with respect to the Vanilla Classifier, which are hθµ
and hθσ and that are two affine transformations Rk → Rk.
Thus, we have that:

µzi = hθµ(fθ(xi)) ∈ Rk (6)

σzi = hθσ (fθ(xi)) ∈ Rk (7)

We must note that these transformations add a number of pa-
rameters that, for common values of k, is quite small with re-
spect to the total number of parameters of the whole system.
Specifically, the total number of trainable parameters added is
2k(k + 1). Once µzi and σzi are obtained, during training we
take one sample from this distribution, according to expression
8. The number of samples could be larger, but for simplicity,
we have left it at one in this work. On the other hand, during
the test phase, we take zi = µzi .

zi ∼ N
(
µzi , diag(σ2

zi

)
) (8)

Finally, to obtain the predicted class of the input xi, we have
that:

yi = gφ (zi) ∈ RC (9)

Figure 1 shows the variational classifier schematic. In this case,
the loss function is defined as:

LV C(ti,yi) = βclass · CE(ti,yi)

+
1

k
DKL

(
N (µzi , diag(σ2

zi))‖N (µti , σ
2I)
)

(10)

The first term is the cross-entropy, commonly used in vanilla
classifiers. The coefficient βclass serves to determine the im-
portance given to the classification task and in the section 4 we
study the influence of its value. The second term is the novelty

2824



of this work and establishes that the embedding space is dis-
tributed around distributions depending on the class of the data.
In particular, given an embedding zi, this second term is:

(11)

DKL
(
N (µzi , diag(σ2

zi))‖N (µti , σ
2I)
)

=
1

2

[
k log σ2 −

k∑

n=1

log(σzi)
2
n − k

+
1

σ2

k∑

n=1

((µzi)n − (µti)n)2 +
1

σ2

k∑

n=1

(σzi)
2
n

]

Finally, it should be noted that to use backpropagation algo-
rithm it is necessary to use the reparameterization trick, which
is proposed in [4].

Variational part

Figure 1: Schematic of a Variational Classifier. By eliminating
the blocks inside the red dashed line we would obtain a vanilla
classifier.

4. Results
In this section we describe the implementation and training de-
tails and present and analyze the results obtained by using it.

4.1. Implementation and Training Details

To measure the performance of this proposal, we use as our
embeddings extractor gφ a very similar architecture to the one
proposed in [11] and that is shown in Table 1, which is a slight
modification of MobileFaceNet. For this model, since k = 128,
the number of trainable parameters added is 33024, an increase
of 3.89% over the total, despite being a model with around 850k
parameters. Although other works train first with data from all
machines and then finetuning for each machine obtaining a clas-
sifier for each one [11], for simplicity, we have directly trained
a classifier for each machine from scratch to classify the section
to which each machine belongs. In order to achieve the best pos-
sible performance we have conducted a grid search over valida-
tion dataset to find the best spectrogram configurations for each
machine, which are presented in Table 2. To train the models we
use Adam optimizer [17] with a learning rate of 0.001 during 50
epochs with multistep scheduler with a decay rate equal to 0.2
in epochs 25 and 40 and warmup during 10 epochs. The batch
size used is 64 and we also introduce mixup with α = 0.8 and
SpecAugment for data augmentation. To implement the mixup
in this proposal we have had to add a new equation since in ad-
dition to mixing the inputs xi, xj , the labels ti, tj , we also mix
the means corresponding to the class of each input in the form:

µ̃ = λ · µti + (1− λ) · µtj (12)

where λ ∼ Beta(α, α).

Table 1: Embeddings extractor architecture, where t is the ex-
pansion factor, c is the output channels, n is the number of in-
verted residuals blocks, and s is the stride.

Operator t c n s
Conv2d 3x3 - 64 - 2
Blockneck 2 128 2 2
Blockneck 4 128 2 2
Blockneck 4 128 2 2

Conv2d 1x1 - 512 - 1
Linear GDConv2d - 512 - 1
Linear Conv2d 1x1 - 128 - 1

Table 2: Best Spectrogram for each machine

FFT
Length

Chunk
size

Mel
filters

db

ToyCar 256 512 256 Yes
ToyTrain 128 1024 128 No
Bearing 1024 128 512 Yes

Fan 512 256 512 Yes
Gearbox 400 400 nan Yes

Slider 128 1024 128 Yes
Valve 512 256 512 No

4.2. Anomaly Detection Performance

The main goal of this work is to study whether variational clas-
sifiers improve performance in the anomaly detection task. For
this purpose, we study how the different hyperparameters of
these systems influence. In addition, we compare the results
obtained using a variational classifier with respect to using a
vanilla classifier trained with cross-entropy or ArcFace [18],
which are two of the most used loss functions to obtain em-
beddings used to detect anomalies [19, 20]. In the case of vari-
ational classifier we define two anomaly scores. The first one is
the cosine distance of each test embedding with all the train em-
beddings and choose the minimum. To obtain the second one,
we take each test embedding and calculate its negative likeli-
hood in each distribution of the train embeddings, choosing the
minimum of all as the anomaly score. In the vanilla classifier
we take only the first anomaly score, since it is not possible to
calculate the second one because we do not know the distribu-
tion of the embeddings.

Let’s first analyze how the µ and σ parameters influence
performance at each anomaly score. To do so, we set βclass =
1. In Table 3 we see that, when the anomaly score used is the
cosine distance, lower means magnitude perform better in gen-
eral. In addition, it is convenient to reduce the variances when
the means are lower. On the other hand, we see that, when nega-
tive likelihood is used as anomaly score, lower means also work
better and that, in general terms, lower variances work better.

In order to analyze the influence of βclass, we take the best
µ and σ found for each anomaly score in Table 3. The results
are shown in Figure 2. In this case we can see that the case that
works best for both scores is βclass = 1. On the other hand,
the extreme values perform better than 0.1 in the case of the
cosine distance, while in the case where the anomaly score is
the negative likelihood the opposite happens.
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Table 3: Ω depending on µ and σ when cosine distance|negative
likelihood is used as the anomaly score.

µ
5 10 20 30

σ2

0.02 66.3|65.9 65.6|66.0 66.1|64.6 63.7|64.2
0.05 65.5|64.4 65.8|65.4 65.9|64.5 64.8|64.5
0.1 65.9|64.8 66.4|64.5 66.3|63.2 64.7|63.7
0.2 64.5|63.7 66.3|65.3 65.2|63.4 63.5|63.0

Figure 2: Comparison of βclass.

Finally, we have observed that there are hyperparameter
configurations that work better on some machines than on oth-
ers. Thus, in order to optimize as much as possible the result in
the proposed dataset, we have used the validation data to find the
best hyperparameter configurations and the best anomaly score
for each machine. Table 4 shows the best hyperparameter con-
figuration for each machine. In addition, in Figure 3 we show
the results compared with a vanilla classifier of identical archi-
tecture with cross-entropy and ArcFace as loss functions. As
we can see, both the best on average and the best per machine
significantly outperform the vanilla classifier. We also compare
in Figure 3 our variational classifier with the three best systems
of DCASE 2022 Task 2. We can see, that the best per machine
outperforms [21] and [22]. However, it does not outperform
[11]. Nevertheless, it must be emphasized that the system pro-
posed in that paper is an ensemble of several systems for each
machine, while ours is a single system per machine. This has
the advantage that for each input audio a single prediction has
to be made, which is crucial for this problem, which in indus-
try is intended to work in real time. In addition, the number of
parameters of our system, not being an ensemble of several, is
much smaller.

Table 4: Best hyperparameters of the variational classifier per
machine for Anomaly Detection.

µ σ2 βclass Anomaly Score
ToyCar 5 0.5 1 Neg. Likelihood

ToyTrain 10 0.05 1 Neg. Likelihood
Bearing 10 0.2 1 Cos. Distance

Fan 10 0.02 10 Neg. Likelihood
Gearbox 5 0.02 0.1 Neg. Likelihood

Slider 10 0.02 1 Cos. Distance
Valve 10 0.1 1 Cos. Distance

4.3. Classification Performance

Although it is not the main objective of this work, we have
found that the variational classifier, in addition to presenting
better performance in anomaly detection, is also a better clas-

Figure 3: Comparison of the variational classifier with the
vanilla classifier and the three best performing systems of
DCASE2022 Task 2.

sifier. This may be due to the fact that the embeddings of the
same class are more concentrated among them. In addition, as
embeddings from different classes are trained to be orthogonal
to each other, there is more separation between them in space.
Specifically, we performed a search similar to the one described
in the previous section, achieving the best on average a mean
accuracy of 71.1% when µ = 5, σ2 = 0.02, βclass = 1. Fur-
thermore, if we choose the best combination of hyperparameters
for each machine, the mean accuracy is 72.4%. In this case, we
do not show these configurations, since classification is not the
task of this challenge. The two previous results greatly outper-
form the average accuracy of the vanilla classifier trained with
cross-entropy loss, which is 68.8%.

5. Conclusions
In this work we have presented the variational classifier, which
allows to obtain the distribution of the embeddings for each in-
put instead of calculating only one embedding. This allows the
negative likelihood of the test embeddings in the distributions of
the train embeddings to be used as an anomaly score. In addi-
tion, we can generate embeddings from these distributions and
calculate the cosine distance between the train and test embed-
dings. This combines the two most commonly used methods
for anomaly detection into one. In addition we have seen that
the performance is better in the variational classifier than in a
vanilla classifier when its loss function is the cross-entropy or
the ArcFace. In particular, we have presented the hyperparam-
eter configuration that provides the best results on average in
this dataset, which is made up of audios from diverse origins.
Therefore, we conjecture that these results can be extrapolated
to work with audios from other types of machines. Finally, we
have imposed that embeddings of different classes tend to be or-
thogonal to each other, which also improves the performance in
the classification task with respect to a vanilla classifier trained
with the cross-entropy as loss function.
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