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Abstract
Given a video, previous video-to-audio generation methods use
a hierarchical auto-regressive language model to produce a se-
quence of audio tokens to be decoded into a waveform. The au-
dio generation depends only on the previous audio token and the
current image but ignores the surrounding images that may have
useful information. To learn the relationships between image
frames, in this paper, we introduce GRAVO (Generate Relevant
Audio from Visual features with Online videos), which em-
ploys multi-head attention (MHA) to encode rich context infor-
mation and guide the audio decoder to produce more accurate
audio tokens. Moreover, two auxiliary losses are introduced to
explicitly supervise the MHA behavior, maximizing the simi-
larity between the MHA output vector and the target waveform
representation while preserving the original visual semantic in-
formation. Experimental results demonstrate that GRAVO sur-
passes state-of-the-art models on ImageHear and VGG-Sound
datasets.
Index Terms: audio generation, multi-modality, translation,
language model, pre-trained models

1. Introduction
Deep models for generation tasks have become popular in both
academia and industry [1, 2, 3, 4], such as using large-scale
data and powerful neural networks to generate realistic visu-
als based on the text descriptions [5, 6]. Recently, interest has
grown in using these models to generate audio based on images
[7, 8, 9, 10], which can be useful in various applications, such
as creating sound effects for video games and animations, or
making images more accessible to blind and visually impaired
users.

Prior attempts in this line have developed models with a
pre-determined set of (less than 20) sound classes, leveraging
labeled data for model training [11, 12, 13]. Such models only
work well on the pre-defined sound classes for which they have
been trained and perform poorly on any unseen classes due to
the limited scope of their training data. Recently, [14] and [15]
proposed label-free approaches, allowing open-domain visually
guided audio generation. Specifically, conditioned on the out-
put of an image classifier, [14] generates Mel-spectrograms us-
ing SpecVQGAN, which is then decoded into a waveform using
a neural vocoder. As the most recent state-of-the-art method,
Im2Wav [15] takes advantage of a large amount of image-audio
pairs from online videos on the web. Im2Wav is a Transformer-
based audio Language Model using image representation of the
pre-trained CLIP [16] as input. Based on previous acoustic to-
kens and temporally-aligned visual features, Im2Wav generates
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Figure 1: The overview of GRAVO. CLIP embeddings are
extracted from a given sequence of images and transformed
through multi-head attention (MHA). The transformed embed-
dings are used to generate corresponding audio in the same
video via the image-guided audio generator. In the training
phase, Wav2CLIP embedding is extracted from the target au-
dio and used to guide MHA to extract relevant image features.

audio tokens, which are converted into waveforms using the cor-
responding audio decoder from the pre-trained VQ-VAE model.
Sometimes, the subject of interest in an image and its corre-
sponding audio may not match up perfectly. This can occur
when a subject such as an animal is moving out of the camera’s
view but its sound can still be heard, or an object appears in the
center of the current image but does not make any sound. Given
the aforementioned mismatches between images and audio, it
can be argued that using image representations that are tempo-
rally aligned as input could lead to incorrect results during the
generation process.

In order to determine which objects in the video are audible
and which are not, additional contextual information beyond the
current image is needed. Following this motivation, we propose
the GRAVO (Generate Relevant Audio from Visual features
with Online videos) as shown in Fig. 1, introducing multi-head
attention (MHA) on top of the visual features extracted with
CLIP model. The introduced MHA mechanism in our GRAVO
model enables each frame in the image sequence to have access
to all the information across the entire sequence, thus enabling
the model to automatically learn the inter-frame relationships
and produce more precise information for audio generation. To
further enhance the accuracy of our GRAVO model, we also in-
corporate two supplementary losses that guide the MHA mech-
anism to learn audio information by utilizing the output of the
pre-trained Wav2Clip model [17] as a target for knowledge dis-
tillation. One loss is used to encourage the output of the MHA
to be close to the Wav2Clip embedding. To retain the original
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visual information while ensuring the alignment between image
and audio representation, a second regularizer loss is introduced
to minimize the variance of the learned visual features.

We evaluate GRAVO on VGG-Sound [18] and ImageHear
[15] datasets, which are comprised of videos and single images,
respectively. Experimental results demonstrated that GRAVO
outperformed Im2Wav in both audio classification accuracy,
with an improvement of 9.89%, and audio-visual similarity
score, with an increase of 0.7 on ImageHear. On VGG-Sound,
GRAVO achieves higher audio classification accuracy with an
improvement of 3.8%, as well as a higher audio-visual simi-
larity score of 0.37. Audio demo samples for the evaluation
datasets and generated videos by [6] are available on our web-
site1.

2. Method
Formally, given an audio-video pairs dataset D = {xi,yi}Ni=1,
where xi = (xi

1, · · · , xi
T ) is an audio sample with T time steps,

and yi = (yi
1, · · · , yi

M ) is the corresponding video with M
frames. The goal of GRAVO is to generate high-fidelity au-
dio for the given image or image sequence. Figure 2 sketches
the overview of GRAVO. The model has three modules: the
pre-trained image encoder extracts image representations, the
attention-based conditional audio generator then converts these
image features into a sequence of discrete tokens, and finally,
the pre-trained audio decoder restores the waveform.

2.1. Visual and Audio Representation

We use the pre-trained CLIP [16] model as the image feature
extractor and a pre-trained VQ-VAE model as the audio feature
extractor.

The CLIP model is designed to learn the correlation be-
tween text and image pairs by maximizing their similarity score.
Previous research demonstrates that CLIP effectively captures
the underlying semantics of images [16] and performs ad-
mirably in tasks related to audio generation [15]. Given a se-
quence of images x, the model produces a corresponding se-
quence of semantic representations, represented by f .

The GRAVO model utilizes the pre-trained one-
dimensional hierarchical VQ-VAE model from Im2Wav
[15] as the audio feature extractor. It consists of an audio
encoder, a quantizer with multi-level codebooks, and a decoder.
The encoder encodes x into a series of latent vectors, h,
which are then divided into two-level representations with
shorter sequence lengths, represented by h = [h(1),h(2)].
The quantizer converts these representations into two-level
discrete tokens [z(1), z(2)], with each level utilizing its own
codebook. The decoder then recovers the audio waveform,
which is conditioned on the discrete tokens. During the training
of the GRAVO model, all audio in the dataset, x ∈ D, is
tokenized and used as the predicted targets for the conditional
audio generator. Finally, the pre-trained VQ-VAE decoder is
employed as the wave reconstructor.

2.2. Conditional Audio Generator

The goal of the conditional audio generator is to predict the dis-
crete audio tokens z given the sequence of image features f .
It comprises two auto-regressive language models for coarse-
to-fine generation, referred to as Up and Low. The two lan-
guage models are applied at different time resolutions. The Low

1https://GRAVO-demo.github.io

model is responsible for determining the semantic information
of the generation, while the Up model is tasked with complet-
ing the fine details. Previous research [15], conditions the Low
model on the temporally aligned image representation, fm, at
each generation step. However, the synchronization of audio
and image within a video is not always exact. Sometimes, an
object of interest may not be visible on camera but its sound is
still audible and in other cases, an object appearing in the center
of the frame might not produce any sound. Therefore, not all
image representations contribute equally to audio generation.
To address this problem, we propose using a multi-head self-
attention module (MHA) over the image representations. This
MHA module enables each image representation to attend to
the entire sequence, allowing the model to automatically learn
and understand the relationships between all elements. At every
time step, the Low model is conditioned on both the temporal
aligned MHA output representation as well as the mean of them:

LLow = − log p
(
z
(2)
t |f̄ ′, f ′

t , z
(2)
<t ; θLow, θMHA

)
(1)

where f ′
t is temporal aligned MHA output and f̄ ′ is the mean

vector. The Up model is conditioned on the output of the Low
model as well as the mean of the CLIP image representations:

LUp = − log p
(
z
(1)
t |f̄ , z(2)t , z

(1)
<t ; θUp

)
(2)

During inference, the audio tokens from the Low model are
used as the condition of the Up model. Then the audio tokens
from the Up model are converted into the waveform through the
pre-trained audio decoder.

2.3. Relevance Guided Multi-head Attention

The proposed multi-head attention module improves the re-
ceptive field at each generation time step. However, without
proper guidance, it can be difficult for the model to identify
the most relevant image representation that corresponds to the
present audio segment. To enhance the model’s performance,
we propose the use of two auxiliary losses, which utilize the
Wav2CLIP [17] embedding to direct the MHA to learn the
audio-relevant image features, allowing for better alignment be-
tween image and audio.

Wav2CLIP is an audio representation learning model. It
distills the CLIP model into an audio model, resulting in one
joint embedding space for different modalities. Given an au-
dio piece, Wav2CLIP can project it to a similar space to the
CLIP representation of the relevant image. To guide the MHA
to generate audio-relevant representation, we disclose the dis-
tance between the MHA output and the Wav2CLIP embedding:

Lw = −
M∑

m=1

cos
(
w, f ′

m

)
(3)

where w is the Wav2CLIP embedding.
The above criterion encourages every f ′

m in f ′ to be close to
the Wav2CLIP embedding, which may compromise the original
visual semantic information contained within fm. To prevent
this loss of information, we propose another loss as a regular-
izer, which aims to retain the original visual information while
ensuring the alignment between image and audio representa-
tion. Such a balance improves the overall performance of the
model:

Lf̂ =
M∑

m=1

∥f̂m − f ′
m∥22 (4)
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Figure 2: The overall architecture of GRAVO. The output of multi-head attention (MHA) is used as a condition of Low, which is a
causal language model. In the training phase, clip scores are calculated between Wav2CLIP and CLIP embeddings and used to extract
a yellow block which is the average embedding over the embeddings with higher clip scores. The yellow block is used as one of the
targets of MHA together with the Wav2CLIP embedding. Note that we do not use Wav2CLIP to generate audio in the inference process.

Here, f̂m is either the CLIP representation fm or the mean of f ,
which is determined by the similarity score between the CLIP
representation and the Wav2CLIP representation:

f̂m =

{
fm, if NS(w, fm) > γ ·maxNS(w, f),

f̃ , otherwise,
(5)

where NS represents z-normalized cosine similarity for each
sample along image frames. γ is a threshold that determine
whether fm is audio-relevant visual feature or not. f̃ is the aver-
age of embeddings whose NS score is above γ = 0.9 multiplied
by the maximum value of the normalized scores.

With the proposed two losses, the overall training objective
of the Low model is defined as

LGRAVO = LLow + λwLw + λf̂Lf̂ (6)

where λw and λf̂ are hyper-parameters that we empirically use
0.0001 and 1000, respectively.

2.4. Classifier Free Guidance

We follow the previous work [15] to use the classifier free guid-
ance method to control the trade-off between sample quality and
diversity [19, 20]. As in [15], we replace f ′

m with a learned-null
embedding f∅ during training for each sample in the batch with
probability p = 0.5. During inference on the Low model, we
produce audio tokens using the summation of the probabilities
with and without visual conditioning.

log p(z
(2)
t ) = λf∅ + η(λf ′ − λf∅),

λf ′ = log p(z
(2)
t |f̄ ′, f ′

t , z
(2)
<t ),

λf∅ = log p(z
(2)
t |f̄∅, f∅, z(2)<t ),

(7)

where f̄∅ is the mean vector of null embeddings. η is the guid-
ance scale that determines the trade-off between the diversity
and quality of the generated audio characteristics. We use η = 3
that showed great performance in the fields of text-to-image
[20] and text-to-audio [7] generation following [15].

3. Experiments
3.1. Data

We train our method on VGG-Sound [18] and evaluate on two
datasets: VGG-Sound [18] and ImageHear [15].

VGG-Sound is a large-scale dataset that is created by ex-
tracting audio and visual information from YouTube videos. It
contains 200k 10-second videos from 309 classes. We follow
the same training and testing split as the original VGG-Sound.
The training set is divided into 0.9 and 0.1 ratios for the training
and validation. During training, we randomly crop 4 seconds
of video from each clip. For evaluation, we use only the initial
4 seconds of each clip. Most of the videos in the dataset have
a frame rate of 30 frames per second (fps). For videos with a
frame rate lower than 30 fps, we fill in the initial and final parts
with the first and last frames, respectively. All the audios are
sampled at 16kHz. ImageHear is a dataset that includes 100
images of 30 visual classes. We use this dataset for evaluation
only using every single image as a 4-second video clip. Follow-
ing previous work [15], we generate 120 audios for each class.

3.2. Setup

The VQ-VAE encoder has a total of 5 convolutional layers with
stride 2, and the decoder has the reverse operation. After pass-
ing through two additional convolutional layers, the first code-
book is used to apply an overall downsampling factor of 8. The
second codebook is applied after passing through two more con-
volutional layers, resulting in an overall downsampling factor of
32. This corresponds to a token processing rate of 2000 per sec-
ond for the Up model and 500 per second for the Low model.
Each codebook is composed of 128 sizes, each containing 2048
codes. The auto-regressive models are based on Transformer ar-
chitecture and sparse attention. Each model is 48 layers with a
hidden size of 1024. The MHA module has one layer of 8 heads
and 0.1 rates of dropout. We use the pre-trained VQ-VAE, Low,
and Up-level language models in our experiment2.

We use a batch size of 16 on two Tesla V100 GPUs.
We search hyper-parameters λw over [1, 0.1, 0.0001], λf̂ over

2https://github.com/RoySheffer/im2wav
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(a) ImageHear (b) VGG-Sound

Figure 3: Class-wise accuracies for the generated audio. Reference represents the results for real audio. The results of Im2Wav are
re-implemented using their pre-trained model to get the exact class-wise accuracy number.

Table 1: Image-guided audio generation results for VGG-Sound
(left) and ImageHear (right). Reference represents the result for
real audio. Result of * from [15].

Method FAD↓ KL↓ CS↑ ACC↑ CS↑ ACC↑
Reference - - 8.79 58.02 - -
[14]* 6.64 3.10 4.62 14.44 5.90 22.36
Im2Wav [15]* 6.41 2.53 7.19 35.77 9.53 49.14
GRAVO 5.96 2.38 7.56 39.57 10.23 59.03

[1, 10, 1000], and γ over [0.1, 0.5, 0.9]. Then we set the hyper-
parameter that shows effective performance on the validation
set. We train the model once for each hyper-parameter and the
number of parameters of Im2Wav and GRAVO is 361M and
362M, respectively.

3.3. Evaluation Functions

We evaluate the generated sounds on 4 metrics: Fréchet Audio
Distance (FAD); Kullback–Leibler divergence (KL); clip-score
(CS); audio classification accuracy (ACC, %).

FAD measures the distance between the generated and real
distributions of audio and represents the fidelity of the audio
generation. This distance is calculated by extracting features
from both the real and generated audio using an audio classi-
fier [21]3. CS measures the relevance between images and the
generated audio using pre-trained CLIP and Wav2CLIP models,
respectively. We show the scaled results by multiplying by 100.
KL and ACC are measured using PaSST model [22], which is
an audio classifier of 527 classes. The KL divergence is com-
puted on top of the classifier output. For ACC, we measure the
score after replacing the softmax output of the audio classifier
with zero for the general classes which are arranged by [15].
On VGG-Sound, we measure FAD, KL, and CS for all sam-
ples in the test set and ACC for 30 classes corresponding to the
ImageHear classes.

In the ablation study of GRAVO, we measure the CS for
the target audio and the transformed image features through the
MHA, which we denote tCS.

4. Results
Table 1 shows the results on two datasets. We compare with
SpecVQGAN [14] and Im2Wav [15] as our baselines. It can
be seen that our model improves on all metrics by a large mar-
gin, especially for the ACC metric. The performance gap is
significant on ImageHear. We guess it is because this dataset
includes only a single clean object for each sample and GRAVO

3https://github.com/google-research/
google-research/tree/master/frechet_audio_
distance

Table 2: Ablation study of GRAVO for VGG-Sound (left) and
ImageHear (right).

Lw Lf̂ FAD↓ KL↓ tCS↑ CS↑ ACC↑ CS↑ ACC↑
Im2Wav 6.41 2.53 - 7.19 35.77 9.53 49.14
✗ ✗ 6.06 2.39 11.04 7.41 39.53 9.81 53.06
✓ ✗ 6.10 2.40 32.60 7.43 41.38 9.86 56.28
✗ ✓ 6.37 2.36 9.62 7.31 39.36 10.09 55.83
✓ ✓ 5.96 2.38 9.67 7.56 39.57 10.23 59.03

has learned to generate audio from soundable images well. Fig.
3 represents the class-wise accuracy of 30 classes in ImageHear.
Results show that our method outperforms Im2Wav for most of
the classes.

We further conduct an ablation study to show the effective-
ness of each module. Table 2 shows the results. Firstly, we can
see that even without guidance on MHA, GRAVO improves all
the metrics over Im2Wav. In terms of tCS, all scores of GRAVO
are higher than 8.79, which is a CS of Reference in Table 1. It
implies that MHA transforms the CLIP embedding to the re-
lated features of the target audio more than the original image
sequence. When using Lw only, tCS and ACC improve while
the other metrics keep the same. Lf̂ increases CS and ACC
on ImageHear and does not improve on VGG-Sound. Combin-
ing the two loss functions results in a better FAD and CS on
VGG-Sound, while the other metrics are comparable with the
baseline. On ImageHear, the combination leads to the best per-
formance. It proves the proposed two auxiliary losses are very
useful.

5. Conclusions
In this paper, we present GRAVO, which generates audio that
is relevant to images. To achieve this, the model incorporates
an MHA module on top of pre-trained CLIP features to learn
the intrinsic relationships between images. We also propose to
use Wav2CLIP embeddings to guide the behavior of the MHA
module, allowing it to learn features that are relevant to audio
in images. Experimental results demonstrate that GRAVO sig-
nificantly enhances generation quality across multiple metrics.
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