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Abstract
With the growing availability of large-scale spoken databases,
linguists are increasingly relying on automated tools to obtain
time alignments of sound units to the speech signal. A typi-
cal automated pipeline may involve grapheme-to-phoneme con-
version, forced alignment, and acoustic-phonetic measurement,
and each of these stages requires a strong assumption regarding
the output quality. We investigate these assumptions by auditing
outliers in vowel formants from two multilingual read speech
corpora, CMU Wilderness and Mozilla Common Voice, across
three languages: Hausa, Kazakh, and Swedish. From this audit,
we develop a novel outlier taxonomy that includes the broad
outlier categories of transcript errors, alignment errors, formant
tracking errors, linguistic variations, and fine samples. We show
the utility of this outlier analysis in identifying weaknesses in
corpus-specific and corpus-general pipeline assumptions, and
discovering characteristics of particular languages.
Index Terms: corpus phonetics, acoustic phonetics, forced
alignment, error analysis, G2P conversion, vowel formants

1. Introduction
The growing availability of multilingual speech corpora and
speech processing tools has enabled large-scale cross-talker
and cross-linguistic investigations of acoustic-phonetic varia-
tion. Acoustic-phonetic analysis has typically depended on a
data processing pipeline that involves the collection of speech
recordings, a time alignment of the relevant units of analy-
sis to the speech signal, and acoustic-phonetic measurements
of the relevant units from the speech recording. Researchers
commonly implement this pipeline manually, with utmost con-
sistency and minimal bias; however, researchers can benefit
in terms of time, consistency, replicability, and scalability by
automating aspects of this pipeline. Large-scale, automated
speech analysis can benefit the field in a variety of ways: a field
linguist can develop a spoken corpus with accompanying tran-
scriptions of an endangered language for use in natural language
processing applications [1]; a phonetician can compare the ef-
fectiveness of remote recording methods on retaining accurate
acoustic measures [2]; a sociolinguist can discover measurable
vowel quality differences between groups of speakers in a large
corpus [3, 4]; and, a typologist can test the degree to which
analytic constraints may account for crosslinguistic patterns in
phonetic realization [5, 6].

Nevertheless, automation requires that the researcher com-
mit to assumptions that may not always be met. In the following
paper, we investigate the degree to which underlying assump-
tions of automation may be violated in two multilingual read
speech corpora through an error analysis of automatically ex-
tracted vowel formants. We ultimately suggest that a partial

manual audit should always be implemented, but the presented
patterns provide some insight to future researchers about likely
problematic locations in the overall pipeline.

In processing a large, read speech corpus, we have iden-
tified a series of steps that are frequently automated. At each
of these steps, the researcher makes certain assumptions about
the data and input at hand. If any assumption of a given step is
violated, it will have downstream effects on the resulting seg-
mentation and measurement quality.

First, with read speech data, it is frequently assumed that
the script is the transcript. Though the participant may have
intended to read the script faithfully, a script will not contain
speech errors or disfluencies that may have occurred.

Second, in converting the words of the script or transcript to
a phonetic transcription, it is assumed that the canonical pho-
netic transcription is an accurate phonetic transcription.
Grapheme-to-phoneme (G2P) systems and pronunciation dic-
tionaries convert individual words into sequences of sound units
that are estimated from the orthography. These can be rule-
based, linguist-curated systems such as Epitran [7] or XPF [8],
or ones that involve neural network models [9, 10]. These mod-
els measure accuracy with Word or Phone Error Rate compared
to a gold phone transcription [7, 11, 12, 13]. In some cases, mul-
tiple phonetic transcriptions can be provided for a given word,
but the set of transcriptions is nevertheless constrained.

Third in this pipeline is to conduct phonetic forced align-
ment, in which the output phone sequence is time-aligned to the
audio. Forced aligners rely on acoustic models, which learn sta-
tistical distributions of acoustic properties from discrete sound
units. The quality of the alignment can be evaluated with seg-
ment boundary time displacement [14, 15], a binary accuracy
overlap score [16], or overlap rate [15]; however, these scores
rely on existing gold segmentations, which many researchers
may not have for their data. It is therefore frequently assumed
that the segmentation is viable and accurate given the pho-
netic transcription and acoustic model.

Last in this pipeline is to extract acoustic-phonetic measure-
ments. Regardless of technique, the measurement frequently re-
lies on an assumption of certain parameters. In this paper, we
focus on formant extraction, which measures the spectral fre-
quency of high energy concentrations, which typically reflect
resonances of the vocal tract. The first two vowel formants
are especially representative of vowel quality features such as
height and backness [17]. A popular method for extracting for-
mants is the Burg linear predictive coding (LPC) algorithm that
relies on several pre-specified parameters [18, 19, 3, 20]. Eval-
uation of formant extraction typically uses mean absolute dif-
ferences between the gold standard and automatic formant es-
timates [21, 20]. These evaluation methods once again rely on
gold data, which many researchers may not have. With the ex-
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ception of any coarse outlier exclusion protocol (e.g., removing
all tokens beyond some threshold), it is otherwise frequently as-
sumed that the parameters are accurately specified and the
acoustic-phonetic measurement is viable and accurate.

The end of this pipeline would ideally produce acoustic-
phonetic measurements that represent the targeted speech.
While averages of the data may cut through any noise generated
by the assumptions, the present paper specifically focuses on the
outlying data: these are by definition non-representative tokens
of the targeted speech. In a manner similar to an error analysis,
this paper addresses how we can categorize and understand the
outliers in vowel formants to gain deeper insight into our as-
sumptions of quality from an automated pipeline that includes
grapheme-to-phoneme (G2P) mapping, forced alignment, and
vowel formant extraction. In other words, what are the types
of “errors” that outlying vowel formants represent, how often
do they occur, and why do they occur? This analysis ultimately
reveals characteristics of particular languages and data sources
through their violations of different assumptions in the pipeline;
these are then investigated in a set of case studies.1

2. Data
The present outlier analysis focuses on subsets of two massively
multilingual corpora: the CMU Wilderness Corpus [22] and
its derivative VoxClamantis corpus [5], and the Mozilla Com-
mon Voice corpus [23] and its derivative VoxCommunis corpus
[6]. The CMU Wilderness Corpus contains audio recordings
of the New Testament in nearly 700 languages; each language
has around 20 hours of data that come from a few speakers,
mostly male. The Common Voice data has over 100 languages
represented with spoken utterances collected and validated by
internet users. These corpora were selected because they are
stylistically similar (consisting of read speech), cover a broad
range of languages, and provide phonetic alignments and vowel
formants. We chose three languages from both corpora for
our analysis: Hausa (ISO639-3:hau), a Chadic language spo-
ken in Niger and Nigeria [24]; Kazakh (ISO639-3:kaz), a Tur-
kic language spoken primarily in Kazakhstan [25]; and Swedish
(ISO639-3:swe), a Germanic Indo-European language spoken
mainly in Sweden [26].

3. Methodology
3.1. Data Processing

We downloaded the language-specific data from the Wilderness
corpus2 (sampled at 16kHz and distributed as MP3 files) and
Common Voice3 8.0 (as 32kHz MP3 files), and converted these
to mono-channel 16kHz waveforms. The conversion to WAV
was to satisfy some system assumptions; the files were lossy
from the original MP3 format. The six datasets spanning these
two corpora and 3 languages were all processed by the Epitran
G2P toolkit [7]. While the forced alignment for the VoxClaman-
tis (i.e., Wilderness derivative) corpus used a multilingual ASR
model [27] trained with Kaldi [28], we trained acoustic models
and generated alignments on the Common Voice data with the
Montreal Forced Aligner [14], which also utilizes Kaldi.

1Code for this work is available at https://github.com/
emilyahn/outliers.

2Each reading was individually downloaded from https://www.
faithcomesbyhearing.com/audio-bible-resources/
mp3-downloads.

3Only the validated utterances were downloaded.

The vowel formants were extracted with Praat [18] using
the Linear Predictive Coding (Burg method) algorithm. As
the Wilderness data was impressionistically dominated by male
speakers, the data was processed with a five-formant ceiling of
5000 Hz, as recommended for the male vocal tract. The Com-
mon Voice data was processed with a five-formant ceiling at
both 5000 Hz and 5500 Hz (recommended for the female vo-
cal tract). As Common Voice had a greater mixture of male
and female speakers, a clustering process was applied to clas-
sify each speaker as having a high or low formant range [6].
We used speech from only the low-setting speakers for a bet-
ter comparison to the Wilderness data. Since the size of the
Swedish Common Voice dataset was much larger than the other
two Common Voice language datasets (see ‘Available Corpus’
in Table 1), we down-sampled it by randomly selecting 1000 ut-
terances as the starting point for discovering outliers. Formant
values were taken at the midpoint from the Wilderness data, and
as the mean of values at 3 timestamps from the Common Voice
data: the midpoint, 10 ms prior to the midpoint, and 10 ms after
the midpoint. This corresponds to the primary extraction tech-
nique from each paper. Table 1 gives an overview of the data.

3.2. Outlier Discovery

To identify outlying formants, we implemented the following
procedure. First, [29] showed that using the Mahalanobis dis-
tance metric based on the Minimum Covariance Determinant
is effective for discovering multivariate outliers. We followed
suit and fitted the first two formants into one bivariate Gaussian
model4 per vowel per dataset (e.g., one model for Wilderness
Kazakh /i/).5 Each point’s Mahalanobis distance from the mean
followed a chi-square distribution, from which we estimated the
tail 0.1% of the distribution. This percentage corresponds to
an alpha value of 0.001, which is a conservative estimate for
outlier exclusion. (The outlier threshold corresponded to a Ma-
halanobis distance of 13.82.) From these outliers aggregated
across all vowels per dataset, 100 samples were randomly se-
lected for manual annotation. We also randomly selected 40
‘near-mean’ vowels per dataset that were close to the center of
each vowel distribution (Mahalanobis distance less than 1.0) for
annotation, as a sanity check and to compare against the out-
liers. A total of 600 outliers and 240 ‘near-mean’ vowels were
analyzed across all datasets.

3.3. Outlier Annotation

From our vowel formant audit of the outlying and near-mean
vowels, we developed a new taxonomy of errors as a way to
evaluate our assumptions from parts of the automated pipeline.
First, though we assume the script is the transcript, deviations
from the script are most directly reflected in Transcript Errors.
Second, though we assume the G2P system provides a faithful
phonetic transcription of the speech, if the G2P is not accurate,
it could be reflected in the surfacing of Transcript Errors, Align-
ment Errors, or Linguistic Variations. Some of these violations
also arise not necessarily from ‘accuracy’ of the G2P system,
but rather the chosen granularity of the G2P system (e.g., broad
or narrow transcriptions). The Alignment Error and Formant
Error categories respectively reflect poor performance from the
forced aligner and formant tracker. Multiple error types could
be applied to a single vowel in a multi-label strategy. The tax-

4Models were implemented with the MinCovDet (Minimum Covari-
ance Determinant covariance estimator) package from Scikit-Learn.

5The minimum number of times the vowel must occur was 100.
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Available Corpus Analyzed Corpus

# Total
Hours

# Total
Speakers

# Analyzed
Hours

# Low
Speakers

# Low
Utts

# Vowel
Types

# Vowel
Tokens # Outliers % Outliers

Wilderness
Hausa 20:40 5+∗ 20:40 5+∗ 9626 5 303577 9698 3.19%

Kazakh 18:50 5+∗ 18:50 5+∗ 8085 6‡ 204701 22148 10.82%
Swedish 16:45 1∗ 16:45 1∗ 9516 16 182423 15106 8.28%

Common Voice v8
Hausa 3:23 17 0:57 8 772 5 11490 583 5.07%

Kazakh 1:27 72 1:06 46 796 11‡ 10967 642 5.85%
Swedish 39:28 674 1:02 203† 1000† 16 11230 513 4.57%

Table 1: The Available Corpus was used for developing the acoustic models, while the Analyzed Corpus was used for the outlier analysis
(in the case of Common Voice, only low-formant setting speakers were selected). ∗The number of speakers for the Wilderness data were
estimated from an auditory impression of sampled data. †Swedish originally had 19,168 low utterances and 468 low speakers, before
subsetting. ‡The number Kazakh vowel types differed across dataset types due to utilizing different versions of the G2P tool, Epitran.

onomy includes five broad categories and several fine-grained
subcategories:

1. Transcript Error

Extra Sounds: Extra phones, syllables, or words are spoken
but not transcribed.

Extra Transcript: Extra phones, syllables, or words are
transcribed but not spoken. If only the target vowel is not
spoken, it is a Linguistic Deletion (see below).

Broad: The phone sequence does not appear to match the
audio at all.

2. Alignment Error

Target Overlap: The midpoint of the window does not cap-
ture the target vowel, and the window either includes ex-
traneous phones or it does not include the full vowel.

Broad: There is an alignment issue beyond Target Overlap.
However, it can be observed that some of the transcript can
be heard in the audio.

3. Formant Error

The measured formant value does not reflect the frequency
of the relevant energy band in the vowel.

4. Linguistic Variation

Deletion: Only the target vowel is absent, while the sur-
rounding phones are present.

Change: A different vowel than the target vowel is pro-
duced.

5. Fine

There is no apparent error.

25% of the samples from each dataset were annotated by
five trained linguists, while the remaining 75% had one anno-
tator. Inter-annotator agreement across the five annotators was
calculated with Krippendorff’s Alpha [30]. Because the labels
could be multiply selected, we followed [31] and calculated the
agreement for each label. The scores were found to be reliable.
Agreement across the five annotators had an average Krippen-
dorff’s Alpha of 0.86, aggregated across each of the outlier cat-
egories. Agreement tended to be highest for Wilderness outliers
(0.9, compared to Common Voice outliers at 0.83) and for Tran-
script Errors (0.91, compared to Linguistic Variations at 0.84).

To produce gold labels for the samples that were annotated

by all five annotators, the following heuristic was applied. For
each possible label (e.g., Alignment: Target Overlap), if a ma-
jority (i.e., three out of five annotators) marked it positive, it
was a positive label. If a minority (i.e., only one or two anno-
tators) marked a label positive, then the label from the ‘most
reliable annotator’ was assigned. The ‘most reliable annotator’
was designated as the annotator with the highest cosine similar-
ity between their labels and the majority gold labels.6

4. Results
This section addresses the distribution of outlier vowel cate-
gory types across languages and datasets. Table 1 provides
an overview of the data and aggregate quantity of outliers (as
determined by the Mahalanobis distance); Figure 1 provides
raw counts of outlier types across 600 annotated outlying vow-
els. As shown in Figure 1, the Wilderness corpus contained
more “upstream” Transcript and Alignment Errors, especially
from the Kazakh repository. Even Kazakh’s near-mean vow-
els contained many Transcript and Alignment errors. This was
likely an artifact of the Wilderness data processing: while the
script was manually aligned to the audio at the chapter level,
individual chapter sentences were automatically aligned, re-
sulting in some mismatched audio segments [22]. Meanwhile,
the Common Voice corpus had fewer Transcript Errors as the
script-to-audio utterances were considerably shorter and man-
ually validated; in addition, Common Voice had overall more
Fine samples. Nevertheless, Common Voice had relatively more
“downstream” Formant Tracking Errors and Linguistic Varia-
tions. While MP3 compression, as found in Common Voice,
has been shown to have minimal influence on formant track-
ing [32], formant tracking can be further improved through us-
ing informed thresholds and removing f0 biases [33, 34]. Al-
together, these findings reveal more nuanced violations of our
pipeline’s assumptions.

5. Case Studies
Our manual audit revealed several linguistic phenomena that
were not captured by our G2P assumptions, indicating that the

6The Formant Error category was added after all the data was an-
notated, so the ‘most reliable annotator’ re-annotated all samples origi-
nally marked as Fine, to differentiate whether or not the vowel experi-
enced formant tracking errors.
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Figure 1: Counts of 600 outliers annotated across 5 broad categories in Wilderness (left) and Common Voice (right).

choice of granularity in the phonetic transcription can have
downstream effects. Narrow transcriptions can inhibit cross-
linguistic comparisons of the sound inventory, whereas broad
transcriptions may not accurately represent sounds that undergo
phonological processes like allophony, reduction, or assimila-
tion. In both cases, the G2P output may not consistently repre-
sent the actual pronunciation. In our data, the broad G2P output
resulted in a series of outliers that appeared to reflect systematic
phonetic or phonological alternations in Kazakh and Hausa.

5.1. High Vowel Deletion in Kazakh

Results from our annotations indicated that Linguistic Deletions
occurred most often in the Kazakh Common Voice data. Ac-
cording to [35], high, short vowels in Kazakh are more suscep-
tible to reduction than other vowels. To test this, we conducted
a logistic regression in R [36] to determine if high vowels are
more correlated with vowel deletion. Across all 840 annotated
samples (outliers and near-means), high vowels were 1.7 times
more likely to be deleted than non-high vowels (p < 0.001).
When adding language as an independent variable to the regres-
sion, vowels in Kazakh were 2.4 times more likely to be deleted
than in other languages (p < 0.001). Interestingly, the analyzed
cases of vowel deletion frequently occurred in sibilant environ-
ments. Our analysis may have identified several of these tokens
since sibilants can have measurable formants, but at higher fre-
quencies than would be expected from a vowel.

5.2. Vowel Length in Hausa

Our second case study examines the implications of vowel
length in the G2P transcription of Hausa. Among our annotated
Hausa vowels, 44% of the outliers and 64% of the near-means
are marked as Linguistic Change. The annotators indicated that
they perceived these as reduced and more centralized, e.g., [@,
2, I, U]. Essentially, the centroids of the Hausa vowel formants
were not located in the phonetic positions that the G2P inven-
tory might suggest: /a, e, i, o, u/. While linguists do not agree
on the exact vowel inventory of Hausa, most Hausa inventories
from PHOIBLE include both long and short vowels which could

vary in quality [37]. (Vowel length is not entirely predictable
from the orthography.) The lack of vowel length distinction in
our G2P system, as well as potential vowel quality differences
between long and short vowels, appear to produce inaccurate
distributions of vowel formants in our analysis.

6. Conclusion
When a dataset lacks gold phonetic transcriptions, linguists
may utilize a pipeline that takes transcribed speech, passes it
through an automated grapheme-to-phoneme system, a forced
aligner, and an acoustic-phonetic measurement tool (e.g., a for-
mant tracker). To test the assumptions in this pipeline, we con-
ducted a systematic audit of the outliers in vowel formants, and
developed a taxonomy of errors that may arise. The distribution
of these errors sheds light on common issues that arise in the
automatic processing of each dataset and language.

Future work may consider discovering outliers via alterna-
tive methods, whether by using an a priori threshold of expected
formant values (e.g., [33]) or by extracting features other than
formants (e.g., MFCCs). It is also worth applying our outlier
audit methodology to test the corpus phonetics pipeline on dif-
ferent speech registers, noise environments, and across more
languages. While we recommend always incorporating a par-
tial manual audit in this pipeline, automating the identification
of certain outlier categories would be beneficial as well. Be-
ing able to distinguish between valid linguistic variation and a
technical error is crucial, especially in the context of bias and
fairness in language technologies today. The implications of
this work include a call for careful analysis of what seem like
errors in the output of automated systems.
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