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Abstract

Automatic speech recognition (ASR) training can utilize multi-
ple experts as teacher models, each trained on a specific domain
or accent. Teacher models may be opaque in nature since their
architecture may be not be known or their training cadence is
different from that of the student ASR model. Still, the stu-
dent models are updated incrementally using the pseudo-labels
generated independently by the expert teachers. In this paper,
we exploit supervision from multiple domain experts in training
student ASR models. This training strategy is especially useful
in scenarios where few or no human transcriptions are available.
To that end, we propose a Smart-Weighter mechanism that se-
lects an appropriate expert based on the input audio, and then
trains the student model in an unsupervised setting. We show
the efficacy of our approach using LibriSpeech and LibriLight
benchmarks and find an improvement of 4 to 25% over base-
lines that uniformly weight all the experts, use a single expert
model, or combine experts using ROVER.
Index terms: ASR, teacher-student training, semi-supervised
learning, self-supervised learning, ROVER.

1. Introduction
Self-supervised learning approaches [16, 10, 3] for ASR usu-
ally rely on a single expert teacher model to generate pseudo-
labels to train the student ASR models. ROVER [5] is a clas-
sic technique to generate a single best transcription by aligning
alternate teacher hypotheses and using a rule like majority vot-
ing. Mixture-of-expert (MoE) approaches for speech [14, 20],
on the other hand, make use of the MoE layers in training the
student model. Generally, when we have multiple independent
experts, each of them is trained to be performant for a specific
domain. In practice, these expert models can not be typically
deployed on devices with limited compute and storage. Even
in a resource-rich, cloud-based setting, these experts are hard
to train because the experts are heterogeneous in terms of their
structure (e.g., hybrid or deep neural networks based), in terms
of their dependence on external language models, and in terms
of size. Therefore, we treat these experts as opaque generators
of transcripts for a given audio input.

As an alternative to using MoE layers, which involves ad-
ditional access to the experts beyond output transcripts, we pro-
pose Smart-Weighter, a method that selects a domain expert
among many and with access limited to the generated tran-
scripts. The selection of experts is conditioned on the input
audio, i.e., for a given training utterance we select the best ex-
pert for generating the teacher transcript.

Work done while the first author was an intern with Amazon Alexa.

In this paper, we use the streaming-compatible recurrent
neural network transducer (RNN-T) [7] ASR model, whose
training objective is to maximize the probability of the tran-
script tokens given the audio and the past context. We de-
velop three RNN-T-based domain experts and a separate student
model, all of which are of the same size. We train the experts
on LibriSpeech; the experts are trained on mutually exclusive
data subsets to mimic domain experts. The student model is
then trained, along with the Smart-Weighter network, on un-
transcribed audio, with the selected experts producing the tran-
scripts. While this framework is generally applicable to alter-
nate forms of feedback, such as weak supervision, in this work
we focus on using transcripts from expert models.

Our main contribution is an unsupervised framework for
learning from multiple expert models using a Smart-Weighter
network that selects domain experts based on the unlabeled in-
put audio.

2. Related Work
ROVER [5] combines multiple transcripts using equal weights
or recognition confidences [1] only. Smart-Weighter addition-
ally makes use of utterance audio to determine transcript rele-
vance. Another disadvantage of ROVER is that it asymptotes
quickly as the number of experts increases. Furthermore, a
ROVER expert can itself be added to the list of experts that the
Smart-Weighter weights over. Alternatively, Smart-Weighter
could be used to estimate the weights of the different inputs
prior to combination with ROVER.

A popular approach to teacher-student learning is knowl-
edge distillation (KD). In KD, the student is trained to match
with the teacher’s output distribution by minimizing the KL di-
vergence between either their bottleneck layer or output activa-
tions. However, KD is not practical with opaque experts that do
not provide access to activations. Although KD was originally
used to learn from a single model, [11] uses multiple teachers
while using uncertainty-based KD. In [22] reinforcement learn-
ing (RL) is used to select teachers for KD. The approach relies
on feedback/reward based on the performance of the student
model to update the policy parameters. Unlike in [22], here we
consider an unsupervised setting where we do not have access
to ground-truth transcripts to generate rewards, such as word
error rate (WER). KD also has been used for multi-level-multi-
teacher [12] and methods based on error rate instead of loss [6].

Another line of work utilizing multiple experts is mixture of
experts (SpeechMoe2 [21], DeepMoe [19]). A router chooses
among experts in each neural network layer during training,
given an input acoustic embedding. In this setting, the experts
and student are trained end-to-end, leading to a less computa-
tionally expensive solution when expert and student are com-
bined. [2] uses an RL-based policy to mask the activation in
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Figure 1: Visualization of training or updating a student model
given unlabeled audio. For a given utterance, we have teacher
transcripts from multiple opaque experts of differing quality.
A Smart-Weighter (W-network) consumes expert transcriptions
and utterance audio to weight their quality, with a larger weight
given to experts deemed to be more accurate. The student model
is trained using semi-supervised learning with audio and paired
expert transcriptions using the determined weights.

each layer in the mixture of experts. This method is not ap-
plicable to our scenario since our domain experts are typically
large and reside in the cloud. Also, the experts cannot be trained
along with the student model.

Speech enhancement solutions have also been proposed to
use multiple experts. Like our work, [8] presents a gating mech-
anism for expert selection and loss propagation in end-to-end
training. The gating mechanism learns to choose appropriate
weights while training the experts. [15] uses an ensemble model
to train specialized experts based on different speakers, giving
significant gains in speech enhancement. Speakers are parti-
tioned based on their characteristics, using k-means clustering.
We took inspiration from the clustering-based approach and gat-
ing mechanism found in this earlier work.

3. Method
Our focus is on training and updating student ASR models given
unlabeled audio and arbitrary opaque teacher ASR models. In
this section, we first describe the Smart-Weighter model that ei-
ther selects an appropriate expert or weights its transcripts for
a given utterance. We then describe the setup used to obtain
teacher models using LibriSpeech [13], although the ideas de-
veloped here are applicable to arbitrary experts. Finally, we de-
scribe how student ASR models are trained from scratch given a
stream of unlabeled audio (e.g., LibriLight [9]) using transcripts
obtained from multiple experts weighted by the Smart-Weighter
model. This overall workflow is shown in Figure 1.

3.1. Smart-Weighter

In order to train a student model using these multiple expert
transcriptions of differing quality paired with audio, we develop
a Smart-Weighter that selects or weights an appropriate expert
given the utterance input.

This is done by generating weights for each expert that sum
to 1, thereby conforming the weighting to a probability simplex.
A larger weight is assigned to experts that are deemed to be
more accurate for that utterance.

The Smart-Weighter network shown in Figure 2 takes as in-
put an acoustic signal and transcriptions from the expert mod-
els (we use three experts here, but the method is applicable
to an arbitrary number). It uses a unidirectional LSTM-based
speech encoder trained on the LibriLight dataset to generate
acoustic signal embeddings and a pretrained BERT model [4]
to generate expert-transcription embeddings. The transcription

Figure 2: The Smart-Weighter consists of a speech encoder
that produces features from an utterance audio and a BERT
language model that produces features from expert transcrip-
tions. A transformer-decoder model consumes the BERT fea-
tures while cross-attending to audio features. The outputs are
processed to determine the weights of the expert models.

Table 1: Number of speakers used for training expert ASR mod-
els on LibriSpeech partitions. Speakers are partitioned either
randomly or clustered by speaker embeddings.

Expert 1 Expert 2 Expert 3
Random 779 779 780
Clustered 488 1074 758

embeddings are then joined together using a separator token
embedding and used as input for a transformer-decoder model
[18] that cross-attends to the acoustic embeddings. We use a
6-layer transformer-decoder model (512 units and 8 attention
heads) that uses full self-attention on the input, which is a con-
catenation of the BERT embeddings of expert transcriptions
with full cross-attention to relevant sections of the acoustic em-
beddings. The output of the transformer-decoder layer is then
pooled and passed through feed-forward dense layers with in-
termediate ReLU activations and a final layer using softmax ac-
tivation. Finally, we obtain weight values wi, i = 1, 2, 3, corre-
sponding to the three experts.

The Smart-Weighter is trained on a 100-hour subset of the
LibriSpeech dataset also using ground-truth transcriptions. For
an utterance, we obtain expert weights wi and we develop target
labels z ∈ {0, 1}3 where zi = 1 if expert i has the lowest word
error rate (WER) as measured using ground-truth transcriptions,
and zi = 0 otherwise. We then apply binary cross entropy loss,
i.e., L = −∑

i zi logwi +(1− zi) log(1−wi) on each of the
expert weights. Thus the Smart-Weighter is trained to upweight
expert transcriptions that show lowest WER and produce lower
weights for experts that show poor performance.

3.2. Expert Setup
We treat the expert models as opaque models that may have
arbitrary architectures, model sizes, training methodologies or
training sets, and may include unspecified domain-specific aux-
iliary language models. The experts may have comparable per-
formance or be trained on complementary data with minimal
overlap. It is unreasonable to expect an expert to be the best
performer across all domains and for all utterances. Different
expert models may outperform others depending on domain or
context, especially when they have similar capacities or sizes.

In order to simulate the variability of real-world expert ASR
models, we trained ASR expert models using alternate splits of
the 960-hour LibriSpeech dataset. We train three experts using
two different speaker partitioning strategies. The first method
randomly partitions the speakers of the training set; the second
method clusters the training speakers using k-means on their au-
dio features (speaker embeddings). The sizes of the speaker par-
titions created by these two schemes (Random and Clustered)
are shown in Table 1. We expect the experts to perform simi-
larly when trained on random speaker partitions, and to be more
complementary when trained on clusters based on speaker sim-
ilarity.
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Figure 3: Speaker cluster assignments for expert ASR train-
ing based on random assignment (left) and speaker embedding
based clusters (right).

3.2.1. ASR Model
We use the recurrent neural network-transducer (RNN-T) ar-
chitecture for all expert teacher models. We believe our method
generalizes to different architectures and model sizes, but leave
a study beyond RNN-Ts to future work. One advantage of
this choice is that all experts can be deployed on resource-
constrained devices which may not be feasible if larger archi-
tectures are used.

The models have 60M parameters with a 5 × 1024 LSTM
encoder, a 2 × 1024 LSTM prediction network and a feed-
forward joint network with tanh activation. The input embed-
dings of the prediction network are 512-dimensional. We use a
2500 word-piece tokenizer. SpecAugment is used for the audio
features. The audio features comprise 64-dimensional log-Mel
filter-bank energy features that are computed over a 25-ms win-
dow with a 10-ms shift. The features computed on three con-
secutive 10-ms frames are stacked and subsampled to result in
a 192-dimensional features at a 30-ms frame rate, which form
the input to the ASR model. All expert and student models are
trained to convergence (30-50K steps on 24 V100 GPUs) with
Adam optimizer and learning rate of 10−5.

3.2.2. Speaker Clustering
To partition speakers by similarity, we use a trained speaker
identification model trained on LibriSpeech.1 For each speaker
and utterance, we prepare mean- and covariance-normalized
features for segments of length 1 second. The speaker em-
bedding for the utterance is the average of 10 such evaluations
of the embedding model. For each speaker, we obtain 10 em-
beddings (for 10 different randomly chosen utterances) that we
make use of in the clustering procedure described below.

We applied k-means clustering with a fixed initial state on
the speaker embeddings to group them into three disjoint clus-
ters. We use a majority vote to assign a speaker to one of the
three clusters based on their 10 embeddings.2 Figure 3 shows
the speaker cluster assignments for the random and clustered
partitioning, using a t-SNE [17] visualization to map the 512-
dimensional speaker embeddings to two dimensions.

3.3. Student Model
Our student ASR model is an RNN-T similar to the experts,
trained from scratch on unlabeled audio using the expert out-
puts as teacher. We employ a similar architecture for student
and experts based on past findings [20] that contrast model com-
plexity and type of students and teachers and shows that most
effective training occurs when model architectures are similar.
Additionally, student and teacher models can run on resource-
constrained devices. However, our methods are generally appli-

1Specifically, we use the ResCNN model trained with triplet loss, as
available on https://github.com/philipperemy/deep-speaker.

2As anecdotal validation, when using just two clusters, we obtained
a partition that strongly correlated with gender annotations.

Table 2: WER evaluation of experts on LibriSpeech data splits.
The results for the choice of “Best-Expert” are highlighted.

Random Expert Clustered Expert
1 2 3 1 2 3

TestClean 10.91 11.81 10.82 13.66 11.27 15.94
TestOther 25.56 26.53 25.27 30.5 28.57 35.18
DevClean 10.77 11.45 10.78 13.65 10.99 16.07
DevOther 25.18 25.29 24.27 29.75 27.02 33.16
Train 9.74 9.93 9.24 12.08 8.48 16.15
Train split

Expert-1 0.34 14.28 13.29 0.14 15.65 20.1
Expert-2 14.32 0.74 14.14 18.09 0.13 20.68
Expert-3 14.25 14.97 0.38 17.18 15.36 0.18

cable to settings with differing model complexities for student
and teacher models.

Given a pair of audio features x and transcription t,
an RNN-T model is trained by minimizing the RNN-T loss
LRNNT(x, t) that maximizes the probability of obtaining tran-
scription t given x. The method used to combine the expert tran-
scriptions ti impacts student performance. The Smart-Weighter
described in Section 3.1 weights the expert transcripts based on
inferred accuracy. We contrast this method with two baselines:
• Baseline 1: Best-Expert is to train the student model using

the transcription from a single best expert t∗ as determined
from the validation set, i.e., the student model is trained with
the loss function L(x) = LRNNT(x, t

∗).
• Baseline 2: All-Experts is to train the student model by

weighting the transcriptions from all experts equally, i.e., the
loss function for each utterance is the sum of loss functions
for each of the experts: L(x) = 1

3

∑
i LRNNT(x, ti).

We compare these baselines and ROVER combined expert tran-
scription with our proposed method:
• Smart-Weighter produces weights wi corresponding to each

of the expert transcriptions for an utterance. The weights
wi produced have low entropy, i.e., the weight for one of
the experts is close to 1 and others near 0. In order to
make use of all available information, we flatten this distri-
bution by renormalizing the weights using softmax with a
temperature parameter (T = 1), giving normalized weights
ŵi = ewi/T

∑
j e

wj/T
. Finally, the loss function for training the

student model using the expert transcriptions weighted by the
Smart-Weighter is L(x) =

∑
i ŵiLRNNT(x, ti).

4. Results
4.1. Evaluating the Experts
Table 2 shows the ASR performance of the experts on various
LibriSpeech data splits. We can observe overfitting on the spe-
cific data split an expert is trained on (e.g., Expert 1 on Expert
1’s training split), but not on the other splits. We observe some
variation in the performance of the experts obtained by speaker
clustering, since, unlike for the random splits, these experts had
differing numbers of utterances and speakers for training.

4.2. Student Model Evaluation
The student model is trained on 10K-hour subset of the Libri-
Light dataset and evaluated on LibriSpeech train, dev and test
splits. For the Best-Expert baseline we chose Expert 3 among
the random experts, and Expert 2 for the clustered experts,
based on the highlighted results shown in Table 2 and train a
student model. The All-Experts baseline model is trained by
giving all experts equal weight, as described in Section 3.3. As
another baseline, we also evaluate using ROVER [5] to combine
teacher transcripts.
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Table 3: WER results with student model trained on Lib-
riLight and experts trained on LibriSpeech, using different
teacher configurations and training speaker partitioning meth-
ods (Random and Clustered).

Teacher TestClean TestOther Train DevClean DevOther
Random

ROVER Baseline 9.32 22.84 7.62 9.52 21.90
Best-Expert 10.03 23.69 11.80 9.89 22.83
All-Experts 7.79 19.93 8.56 7.72 19.46

Smart-Weighter 7.47 19.37 7.95 7.34 18.85
Clustered

ROVER Baseline 11.08 27.55 9.06 10.97 26.34
Best-Expert 9.40 24.09 11.07 9.23 23.62
All-Experts 8.55 22.33 9.81 8.42 21.53

Smart-Weighter 8.21 21.22 9.32 7.90 20.86

Table 4: WER results with student and experts trained on Lib-
riSpeech, using different teacher and oracle configurations and
training speaker partitioning methods (Random and Clustered).

Teacher TestClean TestOther Train DevClean DevOther
Random

ROVER Baseline 9.32 22.84 7.62 9.52 21.90
Best-Expert 10.15 23.45 9.99 10.19 22.70
All-Experts 7.94 18.86 6.83 7.67 18.42

Smart-Weighter 7.53 18.93 5.30 7.22 18.17
Oracle 7.41 18.24 1.80 7.06 17.68

Clustered
ROVER Baseline 11.08 27.55 9.06 10.97 26.34

Best-Expert 9.08 23.05 7.78 8.89 21.97
All-Experts 8.33 20.92 6.95 8.16 20.35

Smart-Weighter 7.95 19.85 5.09 7.70 19.29
Oracle 7.08 17.88 1.82 6.83 17.48

Table 3 shows all results when training the student on Lib-
riLight data. ROVER outperforms the best teacher model com-
paring with Table 6. Distilling a student on a large dataset
makes it better than the corresponding teacher model (compar-
ing Best-Expert student model to the best performing teacher).
All-Experts performs better than Best-Expert and ROVER,
showing the value of multiple experts. For random experts,
Smart-Weighter shows an improvement of 4% and 3% com-
pared to All-Experts, 25% and 18% compared to Best-Expert,
and 20% and 15% compared to ROVER baseline on test-clean
and test-other splits. For clustered experts, we see 4% and
5% improvement compared to All-Experts, 13% and 12% com-
pared to Best-Expert, 26% and 23% on test-clean and test-other.
Best-Expert is more competitive with clustered experts, possi-
bly because the best expert also has the largest training set.

Table 4 shows results with a student model when trained on
LibriSpeech data, but without using ground-truth transcriptions.
Here we can also study what an “oracle” expert could achieve,
i.e., choosing the expert with the most accurate output for each
training utterance, giving us a bound on the performance of an
expert-weighting model. With such an oracle, we see larger im-
provements for clustered experts than for random experts; this
could be simply because clustered experts have more variation
in their output quality.

Notably, for different datasets as well as different configu-
rations of expert models, using a smart weighter produces statis-
tically significant improvement compared to the baselines. We
also note the counter-intuitive finding that the end-to-end stu-
dent ASR evaluation with random experts is better than with
clustered experts. We suppose this is because of the unequal
cluster sizes in the clustered case. We defer the investigation of
optimal cluster assignment for expert training to future work.

4.3. Smart-Weighter Evaluation
We evaluate our Smart-Weighter using two metrics. The first,
accuracy, is based on the percentage of transcriptions se-

Table 5: Smart-Weighter evaluation results on LibriSpeech
Random Clustered

Accuracy Weighted WER Accuracy Weighted WER
TestClean 60% 0.118 63% 0.134
TestOther 49% 0.280 59% 0.315
DevClean 61% 0.110 64% 0.130
DevOther 50% 0.254 58% 0.286

lected from the best teacher, i.e., 100% implies that the Smart-
Weighter always assigned highest weight to the expert with
lowest WER. Another metric, weighted WER, uses Smart-
Weighter output to compute a weighted average of WERs∑3

i=1 wi ·WER(t∗, ti). The intuition behind this metric is that,
as the model learns, the weights should increase for lower-WER
transcriptions and weighted WER will decrease. As shown in
Table 5, the Smart-Weighter performs marginally better at as-
sociating acoustic profiles with relevant experts using clustered
experts than with random experts .

4.3.1. Smart-Weighter with ASR entropy

As a possible variant for expert weighting, we study the effect
of adding a simple form of ASR confidence as side information
to the W-network. This makes additional assumptions about the
expert models, i.e., that n-best hypotheses and their scores are
available. We compute the posterior hypothesis probabilities pi
from their score values si, by normalization: pi = si∑

j sj
. The

entropy is then computed as H = −∑
i pi log pi. We use the

n = 10 best hypotheses.

This entropy measure is low when the 1-best hypothesis is
assigned a score vastly higher than the other hypotheses, and
higher when the ASR model is less confident in its best hypoth-
esis. This entropy measure is injected into the Smart-Weighter
model in the feed-forward layers before the final weights are
obtained. Results seen in Table 6 show a 3 to 4% improvement
in accuracy as compared to Table 5 for random experts.

Table 6: Smart-Weighter evaluation results on LibriSpeech
splits after including ASR entropy information

Random Clustered
Accuracy Weighted WER Accuracy Weighted WER

TestClean 63% 0.113 64% 0.133
TestOther 53% 0.274 60% 0.314
DevClean 64% 0.109 64% 0.130
DevOther 54% 0.244 57% 0.287

5. Conclusions

We have shown how to train student ASR models given unla-
beled audio using teacher output from multiple opaque expert
ASR models. An application of this framework is in contin-
ual adaptation of deployed ASR systems, using unlabeled au-
dio and domain-specific experts. We have developed a Smart-
Weighter that consumes audio features and expert transcriptions
and upweights experts that are deemed to be more accurate for
a given training utterance. We simulated opaque ASR experts,
with or without complementarity, using multiple speaker par-
titioning strategies. The student model trained with weighted
expert teacher transcriptions showed a 4 to 25% improvement
over baselines that weight all experts uniformly, choose a sin-
gle expert, or combine transcriptions with ROVER. We also ob-
served an improvement in the Smart-Weighter by using ASR
confidence or entropy as an additional feature.
Acknowledgments: We thank Anirudh Raju, Gautam Tiwari, Gu-
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