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Abstract
While speaker identification (SI) systems based on deep

neural network (DNN) have been widely applied in security-
related practical tasks, more and more attention has been at-
tracted to the robustness of SI systems against potential mali-
cious threats. Existing works have shown that white-box at-
tacks can greatly threaten the current SI systems, but white-box
attacks require complete knowledge of the target model, which
is almost impractical in many applications. As far as we know,
only a few works have studied the more practical black-box at-
tacks, while these attacks are mostly ported from computer vi-
sion task and lack the adaptability to speech data. In this work,
we propose a novel black-box attack, called speaker-specific
utterance ensemble based transfer attack (SUETA). SUETA uti-
lizes the unique characteristic of speech data that different utter-
ances of one specific speaker share the same voiceprint to attack
on SI systems. To the best of our knowledge, SUETA is the first
black-box attack on SI systems that utilizes the unique charac-
teristic of speech data. Experimental results on three represen-
tative SI models show that SUETA can achieve better transfer
success rate (TSR) than speaker-unrelated baselines. Further-
more, SUETA can even improve the attack success rate (ASR)
of white-box attacks on local substitute model, which is the first
step to perform the transfer based black-box attack.
Index Terms: speaker identification, adversarial attack, black-
box attack, transfer attack

1. Introduction
Speaker identification (SI) systems [1] are widely used to recog-
nize a speaker’s identity from utterances by performing a multi-
class classification task. It is one of the most popular speaker
recognition technologies and has been adopted in many real-
world applications, including biometric authentication12, online
payment3 and smartphone personalized service [2]. Due to the
promising performance of deep neural network (DNN), most
of the existing SI systems [3, 4, 5] are based on DNN models.
However, previous works [6, 7] have shown that DNNs are vul-
nerable to adversarial attacks, raising concerns about the safety
and security of SI systems and highlighting the significance of
research on adversarial robustness.

Previous adversarial attacks on SI systems [8, 9] have
shown the effectiveness of migrating white-box adversarial at-
tack methods from image classification problems [6, 10, 11, 12].
The migrated attacks are also effective in speaker verification
problems [13, 14, 15, 16]. Later, more acoustic-designed meth-
ods are proposed. An auxiliary acoustic model is constructed

1https://www.tdbank.com/bank/tdvoiceprint.html
2http://en.ccb.com/en/home/ indexv3.html
3https://render.alipay.com/p/s/download?form=chinese

in [17] to directly output the adversarial perturbation. A fre-
quency masking strategy is proposed in [18] to prevent adding
perturbation on the wave or acoustic features. However, these
effective attacks [8, 9, 17, 18] are studied under the white-box
scenario and are not applicable in real-world applications since
complete model information is usually not accessible. Defend-
ing and attacking SI models in the more practical black-box sce-
nario, where the model information is inaccessible, are more
challenging and have not been adequately studied.

Black-box attacks can be divided into query-based attacks
and transfer-based attacks, according to whether the attacker
interacts with victim systems. Query-based attacks [19] con-
stantly query victim systems and modify the attack strategy ac-
cording to the feedback. This type of attack collects informa-
tion during the querying, but attackers that make high-frequency
queries could be discovered by abnormal query detection meth-
ods [20]. On the other side, transfer-based attacks do not re-
quire interaction with victim systems. Local surrogate models
are leveraged to approximate the speaker embedding distribu-
tion of victim systems. However, due to the lack of interaction,
the performance of transfer-based attacks is usually more lim-
ited than query-based ones. In most existing works, trials on
transfer-based attacks for SI systems are also limited to the di-
rect migration of white-box attacks.

In order to show the threat of transfer-based attacks on
SI systems without interaction, we study how to generate ad-
versarial examples with strong migration under SI systems.
Prior attacks on image classification tasks have tried multi-
ple ways to improve transferability. Model ensemble (ME)
methods [21, 22] can effectively alleviate overfitting to local
surrogate models. Dong et al. [22] have found that optimiz-
ing with momentum can effectively improve the transferabil-
ity of iterative attacks. Data augmentation methods [23, 24]
also improve transferability by increasing input diversity. How-
ever, these methods are speaker-unrelated for voice data, and no
transferability-boosting method has been designed for transfer-
based black-box attack on SI systems as far as we know.

In this paper, we propose a novel black-box attack
method, called speaker-specific utterance ensemble based
transfer attack (SUETA), to attack on SI systems. The main
contributions are listed as follows:

• To the best of our knowledge, SUETA is the first
transferability-boosting method for black-box attack on
SI systems.

• We propose a speaker-specific utterance ensemble loss
function, which improves the transferability of adver-
sarial utterances compared with speaker-unrelated base-
lines.

• Combining with momentum optimization and ME tech-
niques [22], we propose an improved version of SUETA
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and reach a higher black-box attack success rate (ASR).
The results indicate that the non-interactive transfer at-
tack can also threaten the robustness of the SI system.

• SUETA improves the ASR of white-box attacks on the
local substitute model under both L∞ and L2 restriction.
It shows that we can improve the transferability without
weakening the attack performance on the local model.

2. Background
2.1. Speaker Identification Models

The task of speaker identification is to recognize the speaker
of audio enrolled in a speaker database. There are mainly two
steps in a typical SI system. The first step is to extract speaker
embedding by SI models, usually obtained by the pooling strat-
egy [3, 4, 5, 25, 26, 27]. X-vector [3] uses a time-delayed neu-
ral network (TDNN) to extract temporal frame-level features.
D-TDNN [4] aggregates multi-stage information by adopting
dense connectivity. ECAPA-TDNN [5] aggregates and propa-
gates features of different hierarchical levels and uses channel-
dependent frame attention to extract speaker embedding.

The second step is to evaluate the embedding similarity be-
tween input and enrollment audios. Under the close-set SI sce-
nario [8], the SI system will return the speaker with the highest
similarity without rejection. Under the open-set SI scenario, a
similarity threshold is set to reject inputs whose highest similar-
ity is below the threshold. We focus on close-set adversarial SI
attacks in this paper.

2.2. Adversarial Examples

In image classification, the adversarial example [6] is defined as
the input that an attacker maliciously perturbs to cause misclas-
sifications. Formally speaking, with a given classifier f and a
perturbation budget ϵ under a certain distance metric∥ · ∥, the
adversarial examples can be defined as

(x+ δ, y) ∈ {f(x) = y, f(x+ δ) ̸= y, ∥δ∥ ≤ ϵ}, (1)

where adversarial perturbation δ is added to a natural image x
with ground-truth label y.

2.2.1. Classical Attack Methods

Existing works have proposed various attack methods
to generate adversarial examples. Fast gradient sign
method (FGSM) [6] performs a one-step movement from the
original sample x along the gradient direction that maximizes
the classification loss L. Projected gradient descent (PGD) [11]
is an iterative version of FGSM that projects the perturba-
tion onto ϵ-sphere in each iteration. Carlini and Wagner at-
tack (C&W) [12] generates an adversarial example by search-
ing for the minimal perturbation that changes the prediction of
f . The C&W attack proposes a set of substitute loss functions
for the optimizing process, and Madry et al. [11] point out that
choosing the logit loss as

L(x, y) = max
i ̸=y

(h(x)i − h(x)y), (2)

where h is the pre-softmax layer of classifier f , C&W attack
can be optimized effectively in a PGD form.

2.2.2. Transferability-boosting Attack Methods

Momentum method [28] can accelerate the gradient optimiz-
ing process and prevent falling into local extreme points during

iterations. Momentum based attack [22] finds that adopting gra-
dient move of PGD with momentum can prevent overfitting to
the poor decision boundary and thus effectively improve the mi-
gration ability of transfer attack.

Model ensemble attack methods [29, 30, 31] are proposed
to combine the decisions of multiple models, which can im-
prove the overall performance and robustness. A more potent
transfer attack can be generated by ensemble output logits of
multiple local substitute models [21, 22]. The ensembled logit
is the average of the logits of each model.

3. Speaker-Specific Utterance Ensemble
based Transfer Attack

In this section, we introduce SUETA, a speaker-specific adver-
sarial attack method that boosts black-box transferability.

3.1. Threat Model

The threat model specifies the security conditions and defines
the situation considered by the attacker when designing the at-
tack method. To define our attack formally, we describe the
threat model according to the standards provided by [32].
Adversary Goals. For SI systems, an attacker aims to craft a
perturbation δ for utterance wave u of speaker k, such that the
SI system D(u) = argmaxS(u) makes a wrong decision on
perturbed wave u + δ, where SI model S(u) = (s1, ..., sK)
outputs the similarity vector with respect to the total K enrolled
speakers. For the non-targeted attack, the input should be iden-
tified as another wrong speaker as D(u + δ) ̸= k; for the tar-
geted attack, the input should be identified as the specified target
speaker ytarget as D(u+ δ) = ytarget.
Adversary Knowledge. In the common settings of transfer-
based attacks, the attacker cannot interact with the target model
and does not know model information, only being able to train
local surrogate models on the same training set.
Adversarial Capabilities. To conduct meaningful attacks, the
attacker needs to limit the perturbation budget. Otherwise, the
disturbed samples will be easily distinguished, which is out-
side the scope of adversarial examples. In order to measure the
transferability reasonably, we perform attacks under fixed L2

and L∞ constraints determined by pre-experiments.

3.2. Methodology

A transfer-based attack first generates adversarial examples on
the local surrogate models and then migrates to the target model.
The local attack method greatly affects the transferability. In-
spired by data augmentation and model ensemble methods, we
integrate different utterances of the same speaker in the local
attack process. The ensemble loss function helps extract the
same voiceprint information through gradient optimization, al-
leviating overfitting to local decision boundary that contains ex-
tra speech information of SI models.

3.2.1. Local Attack with Momentum-PGD

We conduct local white-box attacks based on the momentum-
PGD (M-PGD) optimization procedure described in the follow-
ing contents. The vanilla PGD is the most commonly used
white-box attack framework. The momentum method accumu-
lates a velocity vector g along the gradient direction and helps
skip poor local extreme points. Existing works [22] find that it
significantly boosts black-box transferability, although it dam-
ages local attack performance slightly. Hence, we adopt both
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PGD and M-PGD as the local attacks to make a comparison in
the later experiments. Under the L∞ constraint, the iteration of
M-PGD at step t is

gt = β · gt−1 +∇L(u+ δt−1),

δt =
∏

B(0,ϵ)

(δt−1 + η · gt

∥gt∥2
)), (3)

where β is a hyper-parameter controlling momentum influence,
and

∏
is the projection operator onto the ϵ-ball B(0, ϵ) cen-

tered at the origin. When β = 0, the method degenerates
to vanilla PGD. Similarly, for L2 constraint, the update step
changes to

gt = β · gt−1 +∇L(u+ δt−1),

δt =
∏

B(0,ϵ)

(δt−1 + η · sign(gt)). (4)

3.2.2. Speaker-Specific Utterance Ensemble Loss

An utterance contains both voiceprint information and speech
information. The black-box attacker aims to generate perturba-
tion that can confuse both the local and target model only on the
voiceprint information. Hence, we include different utterances
of the same speaker in our proposed speaker-specific utterance
ensemble loss function to enhance the focus on voiceprint. We
denote the i-th utterance of speaker k as uki and first compute
the ensembled similarity vector s̃ki as

s̃ki = αS(uki) + (1− α)
1

Nk − 1

∑

j ̸=i

S(ukj), (5)

where Nk is the total number of utterances of the k-th speaker,
and α is used to balance between the current utterance and the
others. The loss on uki is

L(uki) = −max(s̃ki
k −max

j ̸=k
{s̃ki

j }+ c, 0) (Non-targeted),

L(uki, ytarget) = −max(s̃ki
k − s̃ki

ytarget
+ c, 0) (Targeted),

(6)

where c is a confidence parameter. The ensemble loss function
can effectively reduce the overfitting of the current utterance on
the decision boundary of the local model to produce adversarial
examples with stronger transferability.

3.2.3. Optimize with Memomry Buffer

SUETA is performed under the iterative optimization frame-
work based on PGD with the ensemble loss. We use a mem-
ory buffer Sk ∈ RNk×K to store the similarity matrix for each
enrolled speaker. Sk

i is the stored similarity vector of the i-th
utterance and is updated after each perturbation update. The
buffer helps reduce redundant computing overhead according
to Eq. (5). The whole process is summarized in Algorithm 1.

3.3. Combining SUETA with Model Ensemble Method

SEUTA only requires a single local surrogate model as the
source model. Therefore, it can also enroll more local mod-
els to prevent overfitting a single model. We combine SUETA
with the model ensemble method to further improve black-box
transferability. With local substitute models {S1, ..., SM}, we
propose SUETA-ME by replacing S(uki) in Eq. (5) by:

S̃(uki) =
1

M

M∑

j=1

Sj(u
ki). (7)

Algorithm 1 SUETA

Input:
Local surrogate model S, utterance batch Uk =
{uk1, ...,ukNk} of speaker k;
perturbation budget ϵ, number of iterations T , step size η,
momentum factor β, ensemble factor α.

Output:
Adversarial perturbation vectors {δ1

T , ..., δ
Nk
T } of the

batch;
1: Initialize Sk = S(Uk), {δ1

0 , ..., δ
Nk
0 } = {0, ...,0},

{g1
0 , ..., g

Nk
0 } = {0, ...,0};

2: for t = 1 to T do
3: for i = 0 to Nk do
4: s̃ki = αS(uki + δi

t−1) + (1− α) 1
Nk−1

∑
j ̸=i S

k
j ;

5: Calculate loss L with s̃ki, s̃kj = Sk
j by Eq. (6);

6: gi
t = β · gi

t−1 +∇δi
t−1

L;

7: Update δi
t with δi

t−1, gi
t according to the second line

in Eq. (3) or Eq. (4);
8: Sk

i = S(uki + δi
t);

9: end for
10: end for
11: return {δ1

T , ..., δ
Nk
T };

4. Experiments
4.1. Setup

Dataset. We use TIMIT [33] which contains 630 speakers and
6300 utterances. We randomly divided the training set, test set,
and validation set according to the ratio of 8:1:1.
Implementation of SI Models. As introduced in Section 2.1,
we choose X-Vector [3], Dense-TDNN [4], and ECAPA-
TDNN [5] as enrolled model backbones. The wave data is first
preprocessed to obtain 40-dimensional MFCC acoustic features
over a window of 25ms with an overlap of 10 ms. We then
train the models using the Softmax loss function. The Top1 ac-
curacy without adversarial attacks on the test set is 99.37 %,
97.78%, and 99.05%, respectively for X-Vector, Dense-TDNN
and ECAPA-TDNN.
Evaluation Metrics and Baselines. Evaluation is based on
transfer success rate (TSR) and attacks success rate (ASR) given
a fixed perturbation budget. TSR is defined as the proportion of
samples misjudged by both the local and target model in local
countermeasure samples. TSR directly reflects the transferabil-
ity of adversarial examples. ASR is the proportion of successful
attack samples in the total number of attack samples. We com-
pare SUETA and SUETA-ME with baselines including PGD at-
tack and ME attack [22]. Prefix ‘M-’ represents the version of
the method using momentum optimization.
Attack We set ϵ = 0.001 under L∞ constraint and ϵ = 0.2
under L2 constraint. The step size η = ϵ/4. The number of
attack iterations T = 10 for each utterance. For targeted attack,
we choose random target ytarget for each utterance. We set α =
0.3 for SUETA loss and β = 1 for momentum optimization.

4.2. Transfer from Single Model

We first conduct attacks on a single model and compare the
TSR of SUETA with PGD. The experiment directly measures
the impact of the SUETA loss compared to vanilla PGD loss
without introducing additional models. The results of non-
targeted attacks are shown in Table 1. Without momentum
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Table 1: Transfer success rate (%) of non-targeted transfer at-
tack from left source models to top target models. * indicates
the local white-box attacks.

Source Model Attack Method X-Vector Dense ECAPA

X-Vector

L∞

PGD * 27.30 19.68
M-PGD * 46.83 42.54
SUETA * 41.43 34.29
M-SUETA * 46.67 41.27

L2

PGD * 21.59 16.19
M-PGD * 48.89 45.40
SUETA * 49.84 44.76
M-SUETA * 53.33 48.89

Dense-TDNN

L∞

PGD 7.30 * 13.02
M-PGD 25.08 * 34.76
SUETA 20.16 * 27.14
M-SUETA 24.92 * 32.70

L2

PGD 6.03 * 9.52
M-PGD 26.19 * 36.51
SUETA 30.00 * 37.78
M-SUETA 34.76 * 40.00

ECAPA-TDNN

L∞

PGD 21.43 33.02 *
M-PGD 36.83 50.95 *
SUETA 36.19 46.03 *
M-SUETA 43.18 51.59 *

L2

PGD 17.46 27.94 *
M-PGD 45.71 52.22 *
SUETA 51.43 55.71 *
M-SUETA 56.03 58.57 *

Table 2: Attack success rate (%) of non-targeted transfer at-
tacks.

L2 Attack L∞ Attack
Attack Method X-Vector Dense ECAPA X-Vector Dense ECAPA
PGD 17.46 27.94 16.19 21.43 33.02 19.68
M-PGD 45.71 52.22 45.40 36.83 50.95 42.54
ME 39.68 51.90 38.73 31.75 48.57 34.29
M-ME 55.08 63.02 57.30 45.56 56.19 49.52
SUETA 51.43 55.71 44.76 36.19 46.03 34.29
M-SUETA 56.03 58.57 48.89 43.18 51.59 41.27
SUETA-ME 61.11 64.13 60.79 44.29 52.22 45.40
M-SUETA-ME 63.02 66.51 63.02 49.68 56.67 52.22

Figure 1: Attack on X-Vector. The solid line denotes non-
targeted attack and the dotted line denotes the targeted attack.

techniques, the TSR of SUETA is significantly higher than
that of PGD. M-SUETA also achieves the best TSR in most
cases. It shows that the speaker-specific loss of SUETA sig-
nificantly improves black-box transferability compared to the
vanilla speaker-unrelated loss.

4.3. Transfer from Multiple Models

Next, we perform attacks with multiple source models. To com-
pare with single-model methods, SUETA and PGD, we show
the best transfer ASR from one of the source models. The re-
sults of non-targeted attacks are shown in Table 2. M-SUETA-
ME achieves the best ASR almost in all the cases. As shown in
Table 3, our methods still successfully improve the ASR in the
much more challenging targeted attack situation.

Table 3: Attack success rate (%) of targeted transfer attacks.

L2 Attack L∞ Attack
Attack Method TDNN Dense ECAPA TDNN Dense ECAPA
PGD 3.47 2.91 1.24 0.37 3.57 1.48
M-PGD 9.55 5.25 4.09 7.33 3.40 2.88
ME 6.83 5.08 3.81 6.03 4.76 3.17
M-ME 10.95 6.03 6.51 7.62 4.60 4.44
SUETA 13.42 6.96 6.31 6.80 5.54 3.61
M-SUETA 14.38 7.37 7.08 9.99 5.26 4.66
SUETA-ME 13.65 6.19 9.37 9.21 5.08 5.24
M-SUETA-ME 14.44 7.62 10.00 10.32 5.71 5.40

Figure 2: Attack on Dense-TDNN. The solid line denotes non-
targeted attack and the dotted line denotes the targeted attack.

Figure 3: Attack on ECAPA-TDNN. The solid line denotes non-
targeted attack and the dotted line denotes the targeted attack.

4.4. Local White-box Attack

We conduct an experiment on ASR with varying perturbation
budgets to observe the effect of SUETA on local white-box at-
tacks. The results for X-Vector, Dense-TDNN and ECAPA-
TDNN are shown in Figure 1, Figure 2 and Figure 3 respec-
tively. SUETA significantly improves the ASR of targeted at-
tacks compared with PGD while keeping a similar performance
with PGD on non-targeted attacks. The maximum targeted ASR
on Dense-TDNN and ECAPA-TDNN models is below 90%
for PGD attacks, but SEUTA can closely reach 100%. When
transferring from a single model, we have ASRtransfer =
ASRlocal × TSR. SUETA boosts transferability by improv-
ing both TSR and local ASR. On the contrary, M-PGD gains
transferability at the cost of decreasing local ASR.

5. Conclusions
In this paper, we propose SUETA, a transfer-based black-box
attack method that improves the transferability of adversarial
examples. SUETA is the first work to utilize the character-
istic of speech data that different utterances of one speaker
share the same voiceprint. Our experiments on the state-of-the-
art SI models show a significant improvement compared with
speaker-unrelated baselines. Moreover, SUETA also signifi-
cantly promotes the targeted ASR of local white-box attacks.
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