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Abstract

Estimating fundamental frequency (£'0) from an audio sig-
nal is a necessary step in many tasks such as speech synthesis
and speech analysis. Although high estimation accuracy has
been achieved for clean speech, it is still challenging for F'0
estimation to handle noisy speech, mainly because of the cor-
ruption of harmonic structure caused by noise. In this paper, we
view F'0 estimation as a multi-class classification problem and
train a frequency-domain densely-connected convolutional neu-
ral network (DC-CRN) to estimate F'0 from noisy speech. The
proposed model significantly outperforms baseline methods in
terms of detection rate. We find that using complex short-time
Fourier transform (STFT) as input produces better performance
compared to using magnitude STFT as input. Furthermore,
we explore improving F'0 estimation with speech enhancement.
Although the F'0 estimation model trained on clean speech per-
forms well on enhanced speech, the distortion introduced by the
speech enhancement model limits the estimation performance.
We propose a cascade model which consists of two modules
that optimize enhanced speech and estimated F'0 in turn. Ex-
perimental results show that the cascade model brings further
improvements to the DC-CRN model, especially in low signal-
to-noise ratio (SNR) conditions.

Index Terms: Pitch tracking, densely-connected convolutional
recurrent neural network, complex domain, cascade architec-
ture

1. Introduction

Pitch tracking or pitch estimation is a crucial step in applica-
tions such as speech analysis and speech synthesis, and it refers
to estimating the fundamental frequency (F'0) of an audio sig-
nal.! While many pitch tracking methods can estimate the pitch
of clean speech accurately, it is difficult to extract the correct
pitch if the speech is severely interfered by noise since the har-
monic structure and temporal continuities of the speech signal
are corrupted.

Many signal processing algorithms are designed to estimate
pitch from clean or noisy speech. In general, these algorithms
can be categorized into time-domain, frequency-domain, and
time-frequency domain methods. Time-domain methods such
as YIN [1], PYIN [2] and RAPT [3] extract pitch by estimating
the periodicity of the signal. For frequency domain methods
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I'The definitions of pitch and fundamental frequency are not iden-
tical. Pitch is defined as an auditory attribute of a sound, which is a
perceptual measure. On the other hand, fundamental frequency is a
physical property of an audio signal. However, these two terms are of-
ten used interchangeably since they are closely related. In this paper,
we will use the two terms interchangeably for convenience.
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such as SAFE [4] and PEFAC [5], the objective is to determine
the fundamental frequency based on the harmonic patterns of
the signal. Time-frequency domain methods such as Wu et al.
[6] extract pitch by estimating the periodicity of subband sig-
nals in the time-frequency domain. To further improve pitch
tracking results, post-processing methods, such as dynamic pro-
gramming [5] and hidden Markov models [7, 6], are often ap-
plied to the above methods to leverage temporal continuity of
pitch contours by producing a most probable pitch track from
the frame-level pitch candidates.

In recent years, deep neural networks (DNNs) have been in-
troduced to pitch tracking and achieved considerable improve-
ments over signal processing algorithms. In the first such study,
Han and Wang [8] investigated pitch state distribution modeling
in the frequency domain with a feed-forward DNN and a recur-
rent neural network (RNN). The probabilistic pitch state outputs
are connected to form the final pitch contours using Viterbi de-
coding. The models are trained with noisy speech and show
robust pitch tracking performance in different noise conditions.
Recently, time-domain pitch tracking methods such as CREPE
[9] and FCN [10] have been proposed and produce state-of-
the-art F'0 estimation results. These methods take raw wave-
form as input and utilize convolutional neural network (CNN)
models for pitch estimation. Both CREPE and FCN are trained
with synthesized signals, which allows for complete control of
ground truth 0.

In this paper, we propose to use a densely-connected con-
volutional recurrent neural network (DC-CRN) model for noisy
speech pitch tracking. The DC-CRN architecture used in this
study is designed based on the original DC-CRN model [11]
proposed for speech enhancement. Our model extracts pitch
from the frequency domain and incorporates the information
of temporal dependency in pitch sequences with the help of an
RNN. Experimental results show that our model significantly
outperforms baseline methods. In addition, inspired by the suc-
cess of speech enhancement in the complex domain [12, 13], we
explore incorporating phase information in pitch tracking. We
observe that, compared with using magnitude STFT as input,
taking complex STFT as input brings consistent improvements.

Does speech enhancement help pitch tracking in noisy con-
ditions? We observe that extracting pitch from enhanced speech
using a model trained on clean speech functions reasonably
well. However, the distortion introduced by the speech en-
hancement model places a limit on pitch tracking performance.
To reduce the influence of such distortion in enhanced speech,
we propose a cascade architecture that contains two modules.
The first module takes noisy audio as input and focuses on
speech enhancement. The second module takes the enhanced
speech from the first module and noisy audio as input and gener-
ates pitch estimates. The two modules are jointly trained using
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a loss function consisting of a pitch estimation objective and a
speech enhancement objective. Experimental results show that
the cascade architecture further improves the performance, es-
pecially in low SNR scenarios.

The rest of this paper is organized as follows. In the next
section, we describe the details of our proposed method. The
experiments and evaluation results are presented in Section 3.
Section 4 concludes the paper.

2. Model Description
2.1. Speech Synthesis for Data Generation

For training purposes, the dataset should have enough utter-
ances and provide reliable ground truth 'O labels. One way
to obtain such datasets is by gathering datasets such as PTDB-
TUG [14] and KEELE [15] which provide laryngograph record-
ings. A good estimate of ground truth F'0 can be obtained
by applying an F'0 estimator on the laryngograph recordings.
However, as mentioned in [10, 16], the pitch estimates from
laryngograph data are not always reliable and may contain oc-
tave errors. Besides, only limited datasets provide laryngograph
recordings, which makes it more difficult to build a large dataset
for pitch tracking.

To have complete control on ground truth £'0, methods such
as [9, 10, 17] build their datasets with synthesized audios. The
audios are re-synthesized from real recordings and can match
the pitch contours provided for synthesis. Usually, the pitch
contours estimated from the real recordings with pre-existing
F0 estimators are used for synthesis. In this study, we employ
a high-quality speech synthesizer WORLD [18] to re-synthesize
audios for the whole database. WORLD estimates fundamental
frequency, aperiodicity, and spectral envelope and synthesizes
speech based on the estimated parameters. We substitute the
pitch tracker in WORLD with torchcrepe [19], an implementa-
tion of CREPE [9] with pre-trained models and additional sub-
modules for silence detection and filtering out unreliable pitch
estimates, which we find can be tuned to detect the silence and
unvoiced regions more precisely.

2.2. Problem Formulation

Similar to [8, 9, 10], we view pitch tracking as a classifica-
tion problem. Following the setups in FCN [10], the outputs of
our network are 486-dimensional vectors, where each dimen-
sion corresponds to a pitch class. A target frequency range of
[30-1000] Hz is divided into 486 pitch classes ci, c2, ..., Cas6
with a step size of 12.5 cents. It is assumed that all possible
F0 of vocal sounds can be covered by the range, including cor-
ner cases such as high F'0 from soprano singing and low F'0
from the voice in fry mode [10]. Each training target vector y
is generated based on ground truth F'0. To reduce the penalty
for near-correct estimation, the target vector is Gaussian-blurred
with a 25 cents standard deviation, as shown in Eq. 1.

(Ci - Ctrue)z] (1)
2252
where y; is the value of ith bin in the target vector, c; repre-
sents the pitch class of ith bin in cents and ¢¢rye corresponds to
ground truth £'0 in cents.
To learn the probabilistic output, we train DNN by min-
imizing the binary cross-entropy loss between target vector y
and estimated vector g.

yi = exp[—
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where N is the number of pitch classes and is 486 here.

As shown in Eq. 3, to compute a pitch estimate, the pitch
class & with the highest value is first picked. Then, the pitch
estimate in cents ¢ is obtained by calculating a weighted average
of pitch classes near the picked pitch class x.

S i

o= Sized T
x+4 N
Zi:w% Yi

The pitch estimate is then converted from cents to Hz.

3)

T = argmax 9,
1

2.3. Densely-Connected Convolutional Recurrent Network

Although CNN-based methods [9, 10, 20] have achieved state-
of-the-art performance in the clean condition, the CNN mod-
els utilize only local information for pitch tracking, thus cannot
capture long-term temporal variations. However, time conti-
nuity is an essential characteristic of pitch contours in audios.
In this study, we develop a DC-CRN model for pitch tracking,
based on the original DC-CRN model [11] proposed for speech
enhancement. This architecture contains a CNN followed by
an RNN, which helps model the temporal continuity of pitch
contours.

The diagram of the network architecture is shown in Fig. 1.
The input is the complex STFT of the input mixture signal that
has three dimensions: frequency, time, and channel. The real
and imaginary components of the complex STFT are treated as
two separate channels. The network consists of 7 convolutional
densely-connected (DC) blocks followed by a two-layer bidi-
rectional long short-term memory (BLSTM) block and a linear
layer with Sigmoid activation.

Fig. 2a illustrates the architecture and the dense connec-
tivity pattern of a DC block. For the first four layers, each of
them contains a 2-dimensional convolutional layer followed by
batch normalization and exponential linear unit (ELU) activa-
tion function. The last layer, as shown in Fig. 2b, is a gated
convolutional layer that contains the gated linear units. For each
layer, the input is a concatenation of the outputs from the pre-
ceding layers, allowing each layer to utilize the outputs from
preceding layers, which improves the information flow between
layers. For the two-layer BLSTM block, a grouping strategy
[21] is applied to reduce the number of trainable parameters
while not introducing much performance degradation. As illus-
trated in Fig. 3, in the first recurrent layer, the features and hid-
den states are split into disjoint groups. Intra-group features are
learned within each group. To model inter-group dependency,
the representations are rearranged between two recurrent layers.
Layer normalization is applied after each recurrent layer.

2.4. Network Configurations

The proposed model consists of 7 DC blocks and a two-layer
BLSTM block. The first four layers in each DC block are lay-
ers with kernels of size 1 x 3 (times X frequency) and 8 output
channels. Zero paddings are applied along the frequency di-
mension with a size of 1. The last layer in each DC block has
a kernel size of 1 X 4, a stride of 2, and zero paddings of size
1 applied along the frequency dimension. The seven DC blocks
have 4, 8, 16, 32, 64, 128, 256 output channels respectively. For
the BLSTM block, the grouping strategy is applied to reduce the
model size. The group number is set to 4.

2.5. Cascade Architecture

In this study, we investigate improving pitch tracking in noisy
environments by incorporating speech enhancement. Inspired
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Figure 1: Network architecture of DC-CRN pitch tracking model
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Figure 3: Group strategy for two-layer BLSTM

by a recent study [22], a cascade architecture is developed for
this purpose. As shown in Fig. 4, the model consists of a speech
enhancement module and a pitch tracking module. The com-
plex STFT of the noisy input is fed into the speech enhance-
ment module first. The speech enhancement module produces a
complex STFT estimate of the clean speech, which is concate-
nated with the complex STFT of the noisy input and then fed
into the pitch tracking module. The pitch tracking module pro-
duces pitch estimates. The two modules are trained jointly by
minimizing the loss function that is defined as,

L= a£e7Lh + £pitch (4)

= 8i(t, )]

)
where the loss for pitch tracking Ly:c 1S the binary entropy
loss defined in Eq. 2. The enhancement module directly
learns the real and imaginary spectra of clean speech (S, (¢, f),
Si(t, f)) by minimizing Lenp (Eq. 5). T, F denotes the num-
ber of time frames and frequency bins. Coefficient « is set to
0.01 to balance the value ranges of Lyitch and Lepp.
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Figure 4: Cascade architecture

3. Evaluation Results and Comparisons
3.1. Experimental Setup
Data preparation

The synthetic dataset for training is created from the original au-
dios selected from the LibriSpeech [23] 360 hours training cor-
pus, which has clean speech audios from 921 speakers, where
439 speakers are female and 482 speakers are male. To build
the training set, 4152 utterances are randomly picked from the
LibriSpeech 360 hours training corpus. All utterances with au-
dio lengths greater than 6s are cut to 6s long. Then, as described
in Section 2.1, we use torchcrepe [19] to estimate the pitch con-
tours for all utterances. We set less reliable pitch estimates and
F0 in the silence region to 0 with the help of sub-modules in
torchcrepe. With the estimated pitch contours, each utterance
is re-synthesized using the WORLD [18] speech synthesizer.
The dataset is further augmented by re-synthesizing each utter-
ance with pitch contours that are an octave lower and one octave
higher compared with the original pitch contours. Synthesized
audios that contain F'0 out of the target range are removed from
the dataset. All synthesized audios are re-sampled from 16 kHz
to 8 kHz.

To generate noisy mixtures for the training set, we use the
10,000 noises with a total duration of 126 hours, from a sound
effect library®. Each clean utterance from the synthetic training
set is mixed with a random segment from the 10,000 noises with
a signal-to-noise ratio (SNR) randomly chosen from {-5, -4, -3,
-2,-1,0} dB.

To avoid the possible bias brought by the synthesizer, we
build the validation and test set on real recordings. Since octave
errors are observed in the ground truth F'0 obtained from laryn-
gograph data, we adopt consensus ground truth F'0 from [16],
which derives ground truth F'0 by looking for the consensus
from state-of-the-art fundamental frequency estimation algo-
rithms. It is observed that the provided consensus ground truth
is broadly compatible with laryngograph-based ground truth
and more representative in edge cases. For datasets, we choose
Mocha-TIMIT [24] for validation and the FDA database [25]
for testing. The utterances from the validation set are mixed

Zhttps://www.soundideas.com



Table 1: F'O Detection Rates (in %) of proposed and baseline methods

Method Babble Factory Cafeteria
-10dB -5dB 0dB 5dB -10dB -5dB 0 dB 5dB -10 dB -5dB 0dB 5dB
PEFAC 34.44% 55.00% 71.60% 81.14% 59.32% 71.05% 80.21% 85.16% 32.62% 54.85% 70.27% 79.27%
Han and Wang RNN 25.54% 57.09% 82.17% 92.27% 67.08% 84.81% 92.66% 95.41% 20.97% 59.06% 81.95% 93.17%
FCN-noisy 64.64% 83.32% 92.04% 96.65% 80.05% 91.03% 96.11% 97.78% 57.23% 79.34% 90.69% 96.70%
DC-CRN-mag 71.51% 88.05% 94.86% 97.07% 88.49% 95.25% 97.54% 97.92% 71.64% 88.00% 95.38% 97.76%
DC-CRN-complex 75.11% 89.64% 95.38% 97.92% 89.09% 95.95% 97.67% 98.40% 72.40% 88.84% 96.38% 97.89%
Table 2: F'0 Detection Rates (in %) of separate training and cascade architecture
Method Babble Factory Cafeteria
-10 dB -5dB 0dB 5dB -10dB -5dB 0dB 5dB -10 dB -5dB 0dB 5dB
Separate Training 67.52% 83.35% 91.66% 95.22% 80.72% 91.20% 95.54% 96.87% 57.83% 79.89% 91.34% 95.52%
Cascade Architecture 77.83% 90.66% 96.26% 98.01% 90.43% 96.41% 98.09% 98.27% 76.41% 90.15% 96.96% 98.26%

with cafeteria noise from an Auditec CD? at -5 dB SNR. For the
test set, babble noise, factory noise from NOISEX92 [26] and
the cafeteria noise are used for creating noisy mixtures. Four
SNRs {-10, -5, 0, and 5} dB are considered for testing. We use
a Hamming window of 128 ms duration with a 10 ms hop size
for STFT computation.

Comparison baselines

We compare our methods with three pitch tracking methods:
PEFAC [5], Han and Wang’s RNN model [8] and FCN model
[10]. PEFAC [5] is a signal processing algorithm that performs
relatively well in low SNR conditions. The method attenu-
ates narrow-band noise and smoothly varying noise components
by combining non-linear amplitude compression and applying
comb-filter while estimating F'0. Han and Wang’s RNN model
[8] is a speaker-independent model which learns probabilistic
pitch states from noisy speech data and produces the pitch con-
tour by applying Viterbi decoding. FCN [10] is an end-to-end
system that takes raw waveform as input, which achieves state-
of-the-art pitch tracking performance on clean speech. We re-
train Han and Wang’s RNN model (Han and Wang RNN) and
the FCN model (FCN-noisy) with our datasets for a fair com-
parison.

Evaluation metric

Models are evaluated in terms of detection rate (DR) as defined
in [27]. Detection rate is calculated on voiced frames. An es-
timated FO is considered as correct if the estimated F'0 differs
from ground truth F'0 by less than 5%.

No.os
DR =
Np

(6)

No.o5 is the number of frames whose estimated F'0 has a devi-
ation of less than 5% of ground truth F'0. N}, is the number of
voiced frames.

3.2. Results and Comparisons

We compare the proposed DC-CRN model with baseline meth-
ods on the FDA dataset in Table 1. We observe that FCN-noisy
and DC-CRN models significantly outperform PEFAC and Han
and Wang RNN, and the proposed DC-CRN-complex model
yields the best results in all SNR conditions. FCN-noisy has
strong performance in less noisy conditions but DC-CRN mod-
els substantially outperform FCN-noisy in the low SNR sce-
narios, with much fewer parameters (4.1 Million compared to
12.3 Million). For example, under -10 dB SNR, the detection

3https://auditec.com/
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rate is improved by 11.56% on average. In addition, we exam-
ine different input types on the DC-CRN model. We find that
the model using complex STFT input (DC-CRN-complex) con-
sistently outperforms the model trained with magnitude STFT
input (DC-CRN-mag).

In Table 2, we explore different ways of integrating speech
enhancement into pitch tracking. We first train a speech en-
hancement model and a clean pitch tracker separately and eval-
uate the pitch tracker on enhanced speech. A DC-CRN [11]
model for speech enhancement is trained with our training set.
We also train a DC-CRN-complex pitch tracking model for
clean speech, with the clean synthetic training set before mix-
ing. For testing, the noisy input is enhanced by the speech en-
hancement model. The enhanced speech is then used as input
to the pitch tracker. From Table 2, it is observed that the pitch
tracker trained on clean speech performs reasonably well on
enhanced speech. But the distortion introduced by speech en-
hancement seems to limit the pitch tracking performance. On
the other hand, in the proposed cascade architecture in Sec-
tion 2.5, the speech enhancement module and the pitch track-
ing module are jointly optimized by a composite loss function.
Compared with separate training, the pitch tracker in the cas-
cade architecture can adapt to such distortions. As shown in Ta-
ble 2, the cascade architecture substantially outperforms sepa-
rate training. In addition, compared with the DC-CRN-complex
model in Table 1, the cascade architecture brings further im-
provements, especially in low SNR conditions. For example, in
-10 dB SNR scenarios, the detection rate is improved by 2.69%
on average.

4. Conclusion

In this study, we investigate pitch tracking for noisy speech with
a focus on speaker-independent and noise-independent scenar-
ios. We perform pitch tracking in the frequency domain and
treat pitch tracking as a multi-class classification problem. The
proposed DC-CRN model significantly outperforms baseline
methods. It is found that, as the input, complex STFT is prefer-
able to magnitude STFT. In addition, we notice that the distor-
tion in enhanced speech makes it suboptimal for a pitch tracker
trained on clean speech to estimate FO. A cascade architecture is
then proposed which integrates speech enhancement into pitch
tracking. We demonstrate that the cascade architecture reduces
the effects of distortion introduced by speech enhancement and
brings further improvements to pitch estimation results. Future
work will explore voicing detection and pitch tracking in multi-
talker speech mixtures.
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