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Abstract
One-shot voice conversion (VC) with only a single target-
speaker’s speech for reference has become a hot research topic.
Existing works generally disentangle timbre, while information
about pitch, rhythm and content is still mixed together. To per-
form one-shot VC effectively with further disentangling these
speech components, we employ random resampling for pitch
and content encoder and use the variational contrastive log-ratio
upper bound of mutual information and gradient reversal layer
based adversarial mutual information learning to ensure the dif-
ferent parts of the latent space containing only the desired dis-
entangled representation during training. Experiments on the
VCTK dataset show the model achieves state-of-the-art perfor-
mance for one-shot VC in terms of naturalness and intellgibility.
In addition, we can transfer characteristics of one-shot VC on
timbre, pitch and rhythm separately by speech representation
disentanglement. Our code, pre-trained models and demo are
available at https://im1eon.github.io/IS2022-SRDVC/.
Index Terms: disentangled speech representation learning, mu-
tual information, adversarial learning, gradient reversal layer

1. Introduction
Voice conversion (VC) is a speech task that studies how to con-
vert one’s voice to sound like that of another while preserving
the linguistic content of the source speaker [1, 2]. One-shot VC
uses only one utterance from target speaker during the inference
phase [3, 4, 5, 6]. Since one-shot VC requires small amount of
data from the target speaker, it is more suitable with the needs of
VC applications. Compare to traditional VC, to realize one-shot
VC is more challenging.

Many works for one-shot VC are based on speech represen-
tation disentanglement (SRD), which aim to separate speaker
information from spoken content as much as possible. The
AutoVC [7] comes up with the idea to combine the advan-
tages of generative adversarial network (GAN) [8] and con-
ditional variational auto-encoder (CVAE) [9] since GAN can
obtain a good result while CVAE is easy to train. The IVC
system and the SEVC system [3] represent the speaker iden-
tity as i-vectors and speaker embedding to perform one-shot
VC. The unsupervised end-to-end automatic speech recognition
and text-to-speech (ASR-TTS) autoencoder framework [10] use
multilabel-binary vectors to represent the content of speech to
dientangle content from speaker. An F0-conditioned voice con-
version system [11] disentangles prosodic features by tuning the
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information-constraining bottleneck of an autoencoder. Due to
the ability of SRD to disentangle latent space, there are many
other methods [5, 7, 8, 12, 13, 14] based on SRD for VC.

Speech information can be decomposed into four compo-
nents: content, timbre, pitch and rhythm [15]. Rhythm charac-
terizes the speed of the speaker uttering each syllable [16, 17].
Pitch is an important component of prosody [15]. Apparently,
rhythm and pitch representations are related to content, which
are important speech representations to improve the naturalness
of converted speech [18]. The above related works on VC only
consider the decoupling of content and timbre representations
without considering the rhythm and pitch representations re-
lated to the prosody of speech, which may lead to the leakage
of information related to pitch and rhythm into the timbre [19].

Recent studies begin to research pitch and rhythm in VC
such as SpeechSplit [15], SpeechSplit2.0 [20] and MAP Net-
work [21]. They have provided a great start for the controllable
synthesis of each representation. Whereas, their performances
can still be improved for one-shot VC. A recent effort VQMIVC
[22] provides the pitch information to retain source intonation
variations, resulting in high-quality one-shot VC. However, it
does not consider the decoupling of rhythm, resulting in that
pitch and rhythm still entangles together.

In this paper, we propose adversarial mutual information
learning based SRD for one-shot VC. Specifically, we first de-
compose a speech into four factors: rhythm, pitch, content and
timbre. Then we propose a system consisting of four compo-
nents: (1) Random resampling [23] operation along the time
dimension is performed on pitch and content to remove rhythm
information; (2) A common classifier is used for timbre to ex-
tract features related to speaker identity, and a gradient rever-
sal layer (GRL) based adversarial classifier is used for speaker-
irrelevant information (content, pitch and rhythm) to eliminate
speaker information in latent space; (3) The variational con-
trastive log-ratio upper bound (vCLUB) of mutual information
(MI) [24] between different representations is used to sepa-
rate speaker-irrelevant information from each other; (4) A pitch
decoder is used to reconstruct normalized pitch contour and
a speech decoder is adopted to reconstruct mel-spectrogram.
Main contributions of our work are: (1) Implementing one-shot
VC with decoupling content, timbre, rhythm and pitch from the
speech, which ensures pitch, rhythm and content more speaker-
irrelevant and makes timbre more relevant to speaker. (2) Ap-
plying SRD with vCLUB and GRL based adversarial mutual
information learning without relying on text transcriptions. Ex-
periments show the information leakage issues can be effec-
tively alleviated by applying with adversarial mutual informa-
tion learning.
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Figure 1: Framework of proposed model. ‘Pitch Cont.’ is short
for the normalized pitch contour. Rhythm block with holes rep-
resents not all the rhythm information. Signals are represented
as blocks to denote their information components.

2. Proposed Approach
We aim to perform one-shot VC effectively by SRD. In this sec-
tion, we first describe our system architecture. Then we intro-
duce the adversarial mutual information learning and show how
one-shot VC on different speech representation is achieved.

2.1. Architecture of the proposed system

As shown in Fig.1, the architecture of the proposed model is
composed of six modules: rhythm encoder, pitch encoder, con-
tent encoder, timbre encoder, pitch decoder and speech decoder.

Speech representation encoders: Inspired by SpeechSplit
[25], the rhythm encoder Er , pitch encoder Ep, content encoder
Ec have the same structure, which consists of a stack of 5 × 1
convolutional layers and a stack of bidirectional long short-term
memory (BiLSTM) layers. Besides mel-spectrogram, the pitch
contour also carries information of rhythm [15]. Before the in-
put mel-spectrogram S and normalized pitch contour P are fed
to the content encoder and pitch encoder, random resampling
[23] operation along the time dimension is performed to remove
rhythm information. The model only relies on the rhythm en-
coder to recover the rhythm information. The speaker encoder
[5] Et is used to provide global speech characteristics to control
the speaker identity. Denote the random resampling operation
as RR(·), then we have:

Zr = Er(S), Zc = Ec(RR(S)),

Zt = Et(S), Zp = Ep(RR(P ))
(1)

Decoders: The speech decoder Ds takes the output of all
encoders as its input, and outputs speech spectrogram Ŝ. The
input to the pitch decoder Dp is Zp and Zr . The output of Dp

is generated normalized pitch contour P̂ . As for implementa-
tion details, Fig.2 shows the network architecture used in our
experiments.

Ŝ = Ds (Zr,Zp,Zc,Zt) , P̂ = Dp (Zr,Zp) (2)

During training, the output of Ds tries to reconstruct the
input spectrogram S, the output of Dp tries to reconstruct the
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Figure 2: The architecture of proposed model.

input normalized pitch contour P . Decoders are jointly trained
with encoders by minimizing the reconstruction losses:

Ls-recon = E
[
∥Ŝ − S∥21 + ∥Ŝ − S∥22

]
(3)

Lp-recon = E
[
∥P̂ − P ∥22

]
(4)

2.2. Adversarial mutual information learning

As shown in Fig.1, we use common classifier C1 and adver-
sarial speaker classifier C2 to recognize the identity of speaker.
The vCLUB [24] is used to compute the upper bound of MI for
irrelevant information of the speaker. A measure of the depen-
dence between two different variables can be formulated as:

I(X,Y ) =

∫

X

∫

Y

P (X,Y ) log
P (X,Y )

P (X)P (Y )
(5)

where P (X) and P (Y ) are the marginal distributions of X and
Y respectively, and P (X,Y ) denotes the joint distribution of
X and Y .

Gradient Reverse: Assumed the speaker information u
is related to timbre Zt only, while independent of rhyme Zr ,
pitch Zp and content Zc. First, we aim to disentangle speaker-
irrelevant information {Zr,Zp,Zc} from speaker relevant tim-
ber Zt. Instead of directly minimizing I({Zr,Zp,Zc},Zt),
we can maximize I(Zt, u) and minimize I({Zr,Zp,Zc}, u)
respectively, which can be implemented as common classifier
C1 and adversarial speaker classifier C2. As shown in Fig.2,
the input of C1 is Zt and the input of C2 is {Zr,Zp,Zc}.
GRL [26] is inserted in C2 as the adversarial classifier. The two
classifiers can be formulated as:

Lcom-cls
(
θec1

,θc1

)
= −

K∑

k=1

I(u == k) log p′k

Ladv-cls
(
θec2

,θc2

)
= −

K∑

k=1

I(u == k) log pk

(6)

where I(·) is the indicator function, K is the number of speakers
and u denotes speaker who produced speech x, pk is the proba-
bility of speaker k, θec1 denotes the parameters of Et, and θec2
denotes the parameters of {Er, Ep, Ec}. θc1 and θc2 denote the
parameters of C1 and C2 respectively.

Mutual information: A vCLUB of mutual information is
defined by:

I(X,Y ) =Ep(X,Y ) [log qθ(Y | X)]

− Ep(X)Ep(Y ) [log qθ(Y | X)]
(7)

where X,Y ∈ {Zr,Zp,Zc}, qθ(Y |X) is a variational distri-
bution with parameter θ to approximate p(Y |X). The unbiased
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estimator for vCLUB with samples {xi,yi} is:

Î(X,Y ) =
1

N2

N∑

i=1

N∑

j=1

[log qθ (yi | xi)− log qθ (yj | xi)] .

(8)
where xi,yi ∈ {Zri ,Zpi ,Zci}.

By minimizing (8), we can decrease the correlation among
different speaker-irrelevant speech representations. The MI loss
is:

LMI = Î(Zr,Zp) + Î(Zr,Zc) + Î(Zp,Zc) (9)
At each iteration of training, the variational approxima-

tion networks which are trained to maximize the log-likelihood
log qθ(Y |X) is first optimized, and then the VC network is op-
timized. The loss of VC network can be computed as:

LV C = Ls-recon +Lp-recon +αLcom-cls +βLadv-cls +γLMI (10)

2.3. One-shot VC on different speech representations

Take general voice conversion (timbre conversion) as exam-
ple. Rhythm Zrsrc , pitch Zpsrc and content Zcsrc representa-
tions are extracted from the source speaker’s speech Ssrc. While
timbre Zttgt is extracted from the target speaker’s speech Stgt.
The decoder then generates the converted mel-spectrograms as
Ds(Zrsrc ,Zpsrc ,Zcsrc ,Zttgt). To convert rhythm, we feed the
target speech to the rhythm encoder Er to get the Zrtgt . If we
want to convert pitch, we feed the normalized pitch contour
of the target speaker to the pitch encoder Ep. Besides, three
double-aspect conversions (rhythm+pitch, rhythm+timbre, and
pitch+timbre) and all-aspect conversion are similar.

3. Experiments
3.1. Experiment setup

All experiments are conducted on the VCTK corpus [27], which
are randomly split into 100, 3 and 6 speakers as training, valida-
tion and testing sets respectively. For acoustic features extrac-
tion, all audio recordings are downsampled to 16kHz, and the
mel-spectrograms are computed through a short-time Fourier
transform with Hann windowing, 1024 for FFT size, 1024 for
window size and 256 for hop size. The STFT magnitude is
transformed to mel scale using 80 channel mel filter bank span-
ning 90 Hz to 7.6 kHz. For pitch contour, z-normalization is
performed for each utterance independently.

The proposed VC network is trained using the ADAM opti-
mizer [28] (learning rate is e-4, β1 = 0.9, β2 = 0.98) with
a batch size of 16 for 800k steps. We set α = 0.1, β =
0.1, γ = 0.01 for equation (10) and use a pretrained WaveNet
[29] vocoder to convert the output mel-spectrogram back to the
waveform. Due to the lack of explicit labels of the speech com-
ponents, the degree of SRD are hard to evaluate [25]. Therefore,
we focus on the timbre conversion by comparing with other
one-shot VC models (Please note that we are able to transfer
four representations of the one-shot VC as the demo shows, not
just the timbre of target speaker). We compare our proposed
method with AutoVC [7], ClsVC[30], AdaIN-VC [5], VQVC+
[14] and VQMIVC [22], which are among the state-of-the-art
one-shot VC methods.

3.2. Experimental results and analysis

3.2.1. Conversion Visualization

Fig.3 shows the pitch contours of the source (female speaker),
target (male speaker) and converted speeches with the content
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Figure 3: Pitch contours without normalization of single-aspect
conversion results with the content ‘Please call Stella’.

“Please call Stella”. Please note we use parallel speech data to
visualize the results. For timbre conversion, the pitch contour of
the converted speech matches average pitch of the target speech
but retains detailed characteristics of the source pitch contour.
For pitch conversion, on the other hand, the converted pitch con-
tour tries to mimic detailed characteristics of the target speech
with average pitch value close to the source one. For rhythm
conversion, the converted pitch contour is located at the target
position as expected. Furthermore, the timber conversion result
in Fig.3 also confirms to the common sense that the average
pitch of the converted speech decreases from female to male.

3.2.2. Subjective Evaluation

Subjective tests are conducted by 32 listeners with good English
proficiency to evaluate the speech naturalness and speaker sim-
ilarity of converted speeches generated from different models.
The speech audios are presented to subjects in random order.
The subjects are asked to rate the speeches on a scale from 1 to
5 with 1 point interval. The mean opinion scores (MOS) on nat-
uralness and speaker similarity are reported in the first two rows
in Table 1. The proposed model outperforms all the baseline
models in terms of speech naturalness, and has a comparable
performance with VQMIVC in terms of speaker similarity.

3.2.3. Objective Evaluation

For objective evaluation, we use mel-cepstrum distortion
(MCD) [31], character error rate (CER), word error rate (WER)
and pearson correlation coefficient (PCC) [32] of logF0. MCD
measures the spectral distance between two audio segments.
The lower the MCD is, the smaller the distortion, meaning that
the two audio segments are more similar to each other. To get
the alignment between the prediction and the reference, we use
dynamic time warping (DTW). CER and WER of the converted
speech evaluate whether the converted voice maintains linguis-
tic content of the source voice. CER and WER are calculated
by the transformer-based automatic speech recognition (ASR)
model trained on the librispeech [33], which is provided by ES-
Pnet2 [34]. To evaluate intonation variations of the converted
voice, PCC between F0 of source and converted voice is cal-
culated. To evaluate the proposed method objectively, 50 con-
version pairs are randomly selected. The results for different
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Table 1: Evaluation results of different models. Speech naturalness and speaker similarity are results of MOS with 95% confidence
intervals. ‘*’ denotes the proposed model. ‘w/o’ is short for ‘without’ in ablation study. ‘LCLS’ denotes the Lcom-cls and Ladv-cls.

Methods AutoVC ClsVC AdaIN-VC VQVC+ VQMIVC Our Model* w/o Lp-recon* w/o LMI* w/o LCLS*

Naturalness 2.42±0.13 2.82±0.14 2.38±0.15 2.68±0.13 3.70±0.13 3.82±0.13 3.59±0.13 3.47±0.13 1.81±0.18
Similarity 2.80±0.19 3.19±0.18 2.95±0.21 3.08±0.22 3.61±0.19 3.59±0.20 3.24±0.17 3.21±0.14 2.55±0.19
MCD/(dB) 6.87 6.76 7.95 8.25 5.46 5.23 6.45 5.56 9.54
CER/(%) 32.69 42.90 29.09 38.17 10.08 9.60 19.63 6.91 65.00
WER/(%) 47.09 63.35 39.56 52.43 16.99 14.81 28.15 13.35 92.96

logF0 PCC 0.656 0.700 0.715 0.612 0.829 0.768 0.759 0.764 0.672
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Figure 4: The visualization of speaker embedding. None of
these speakers appeared in training.

methods are shown in Table 1. It can be seen that our pro-
posed model outperforms baseline systems on MCD. And our
model achieves the lowest CER and WER among all methods,
which shows the proposed method has better intelligibility with
preserve the source linguistic content. In addition, our model
achieves a higher logF0 PCC, which shows the ability of our
model in transforming and preserving the detailed intonation
variations from source speech to the converted one. LogF0 PCC
of VQMIVC is higher because the pitch information is directly
fed to the decoder, without passing through the random resam-
pling operation and pitch encoder.

Besides, Fig.4 illustrates timber embedding Zt of different
speakers visualized by tSNE method. There are 50 utterances
sampled for every speaker to calculate the timbre representa-
tion. As can be seen, timber embeddings are separable for dif-
ferent speakers. In contrast, the timber embeddings of utter-
ances of the same speaker are close to each other. The result
indicates that our timber encoder Et is able to extract timbre
Zt as speaker information u.

To further evaluate the quality of one-shot VC on differ-
ent speech representations, we use a well-known open-source
toolkit, Resemblyzer1, to make the fake speech detection test.
On a scale of 0 to 1, the higher the score is, the more authentic
the speech is. 50 utterances are used for each model. The av-
erage scores are shown in Fig.5. Our model performs well on
one-shot VC on different speech representations.

3.2.4. Ablation study

Moreover, we conduct ablation study that addresses perfor-
mance effects from different learning losses in equation (10),

1https://github.com/resemble-ai/Resemblyzer
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with results shown in the last three columns of Table 1. From
the results, when the model is trained without the loss of pitch
decoder Dp (Lp-recon) or vCLUB (LMI), the model is still able
to perform one-shot VC and outperforms most of the baseline
models, but the speech naturalness and speaker similarity both
decrease. When the losses of common classifier C1 and adver-
sarial speaker classifier C2 (LCLS) are removed, the results are
poor and no longer perform the VC task well.

4. Conclusions
In this paper, based on the disentanglement of different speech
representations, we propose an approach using adversarial mu-
tual information learning for one-shot VC. To make the tim-
bre information as similar as possible to the speaker, we use a
common classifier of the timbre. Also, we use GRL to keep
speaker-irrelevant information as separate from the speaker as
possible. Then pitch and content information can be removed
from rhyme information by random resampling. The pitch de-
coder ensures that the pitch encoder gets the correct pitch in-
formation. The vCLUB makes speaker-irrelevant information
as separate as possible. We achieve proper disentanglement
of rhythm, content, speaker and pitch representations and are
able to transfer different representations style in one-shot VC
separately. The naturalness and intellgibility of one-shot VC is
improved by speech representation disentanglement (SRD) and
the performance and robustness of SRD is improved by adver-
sarial mutual information learning.
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