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Abstract
Self-supervised speech representation learning has shown
promising results in various speech processing tasks. However,
the pre-trained models, e.g., HuBERT, are storage-intensive
Transformers, limiting their scope of applications under low-
resource settings. To this end, we propose LightHuBERT, a
once-for-all Transformer compression framework, to find the
desired architectures automatically by pruning structured pa-
rameters. More precisely, we create a Transformer-based su-
pernet that is nested with thousands of weight-sharing sub-
nets and design a two-stage distillation strategy to leverage
the contextualized latent representations from HuBERT. Exper-
iments on automatic speech recognition (ASR) and the SU-
PERB benchmark show the proposed LightHuBERT enables
over 109 architectures concerning the embedding dimension,
attention dimension, head number, feed-forward network ra-
tio, and network depth. LightHuBERT outperforms the orig-
inal HuBERT on ASR and five SUPERB tasks with the Hu-
BERT size, achieves comparable performance to the teacher
model in most tasks with a reduction of 29% parameters, and
obtains a 3.5× compression ratio in three SUPERB tasks,
e.g., automatic speaker verification, keyword spotting, and in-
tent classification, with a slight accuracy loss. The code and
pre-trained models are available at https://github.com/
mechanicalsea/lighthubert.
Index Terms: speech pre-training, model compression, knowl-
edge distillation, neural architecture search, Transformer

1. Introduction
Self-supervised speech representation learning has shown that
pre-trained models benefit from abundantly available unanno-
tated data and produce promising results on various speech pro-
cessing tasks [1, 2, 3, 4, 5, 6, 7]. Most speech applications re-
quire models to interact with humans or machines, therefore
demanding real-time performance for a better user experience.
However, many real-world devices, e.g., smartwatches, mobile
phones, tablets, audio-visual robots, and industrial PCs, are
highly constrained by memory and battery. This prevents the
pre-trained speech models from actual deployments.

Building a compression framework for pre-trained models
to meet various resource constraints can be essential for the
development of speech pre-training. It can utilize pre-trained
models trained on large-scale unlabeled data to boost the per-
formance of compressed networks in downstream tasks and

†Equal contribution. Corresponding author: Zhihua Wei (zhi-
hua wei@tongji.edu.cn).

lower entry barriers for pre-training related works. However,
two challenges remain when compressing pre-trained models
without compromising their effectiveness: (1) a lightweight or
sparse network often suffers from a significant performance
drop and demands a high computational cost due to multiple
rounds of pre-training; (2) existing compression methods on
pre-trained speech models such as DistilHuBERT [8] are de-
ficient under various resource constraints. Designing a general-
purpose compression framework that enables different sizes of
models under a tolerable training time is not well explored.

Inspired by the once-for-all approach [9], we propose
LightHuBERT, an efficient model compression framework for
lightweight and configurable speech pre-training, which con-
sists of a once-for-all Transformer, a contextualized latent rep-
resentation distillation objective, and a two-stage training strat-
egy. Specifically, similar to [10], we build a weight-sharing
Transformer supernet with channel-variable convolutional po-
sitional embeddings that can enable a Transformer architecture
to scale in the embedding dimension, the head number, the
feed-forward network (FFN) ratio, and the network depth. We
introduce a pre-training distillation loss and perform masked
self-supervised learning, where the student predicts contextual-
ized representations within masked time steps that contain con-
text information from a pre-trained teacher, the HuBERT BASE
model [11]. A two-stage training strategy is designed to further
improve the performance. Experiments on the automatic speech
recognition and the SUPERB benchmark show that LightHu-
BERT attains superior results under various parameters.

The contributions of this paper are summarized as follows.

• We propose a lightweight and configurable model com-
pression framework for speech pre-training to address
the challenge of applying pre-trained models to various
computational resources.

• We propose (1) a once-for-all Transformer with two indi-
vidual supernets, (2) the contextualized latent represen-
tations to transfer knowledge, and (3) a two-stage train-
ing strategy to improve the performance.

• We demonstrate the effectiveness of the proposed
method with pre-trained HuBERT BASE on automatic
speech recognition task and the SUPERB benchmark.

2. Related Work
Large-scale pre-trained models such as wav2vec 2.0 [5], Hu-
BERT [11], WavLM [12], SpeechT5 [1], and data2vec [13]
have drawn much attention in the speech communities, due to
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Figure 1: Model compression for speech pre-training. All orange components are dynamic and share weights with large ones. Since this
work focuses on pruning the encoder in speech pre-training, we keep the downsampling convolutional network static. Left: Given a pre-
trained speech model, we distill a once-for-all Transformer containing all possible dimensions through weight sharing. We randomly
sample different pairs of these variable dimensions at each training step so that one Transformer can support all architectures. Middle:
We then select many sub-Transformers with different networks from the once-for-all Transformer, validate them without retraining, and
finally select the best architecture given the parameter constraint to perform an evaluation. Right: The once-for-all Transformer block
supports multiple dynamic dimensions: embedding dimension, attention dimension, head number, FFN ratio, and network depth.

their excellent generalization capability across various speech
applications and efficient use of large-scale unlabeled data. SU-
PERB [14] has appeared as a popular benchmark to evaluate
the performance of pre-trained models, where the pre-trained
encoder is frozen and shared to investigate the capability of
representations on various speech tasks, including phoneme
recognition (PR), automatic speech recognition (ASR), key-
word spotting (KS), query by example spoken term detection
(QbE), speaker identification (SID), automatic speaker verifica-
tion (ASV), speaker diarization (SD), intent classification (IC),
slot filling (SF), and emotion recognition (ER).

Reducing architectural complexity of large-scale pre-
trained models has become an indispensable research endeavor
[15, 8, 16, 17, 18, 19, 20, 21]. DistilHuBERT [8] is proposed to
distill hidden representations from HuBERT BASE. It creates a
two-layer Transformer while retaining most performance on ten
SUPERB tasks. Unlike the DistilHuBERT model, which cre-
ates a single compressed network, we distill a once-for-all net-
work to deploy under various computational resources. PARP
[17] is a magnitude-based unstructured pruning method that re-
moves insignificant weights of wav2vec 2.0 based on a sparse
network on low-resource ASR with the monolingual and cross-
lingual transfer. Unlike PARP, we prune structured groups of
weights, therefore, avoiding irregular sparse matrix operations
that are hard to accelerate on hardware [22].

Once-for-all approaches [9] aim to create a weight-sharing
supernet and obtain a huge number of architectures for efficient
deployment with different resource constraints while maintain-
ing the same level of accuracy as those trained independently
[23, 24, 25, 26]. Examples can be found in image processing
[9, 27], natural language processing [28], and speech processing
[29]. Similarly, AutoFormer [10] utilizes weight entanglement
to supernet training and enables Transformer blocks to share
weights for their common in each layer. It allows a large number
of subnets in the supernet to be as well-trained as ones trained
from scratch. Unlike AutoFormer, we introduce a two-stage dis-
tillation to improve the supernet while utilizing a task-agnostic
objective to learn speech representations.

3. LightHuBERT
As shown in Figure 1, in this section, we propose LightHu-
BERT, a task-agnostic compression framework for reducing the
model size of the Transformer encoder in speech pre-training.
Specifically, we propose a once-for-all Transformer that enables
automatic architecture search by pruning structured groups of
weights. We transfer contextualized latent representations to
sub-Transformers. A two-stage training strategy is proposed to
improve the compressed models.

3.1. Once-for-All Transformer

Once-for-all Transformer refers to a Transformer architecture
that contains various sub-Transformers, where different archi-
tectures share weights in a scaling manner. For example, a 256-
dim linear layer is nested in a 512-dim linear layer. We design a
once-for-all Transformer that contains five variable dimensions
similar to AutoFormer [10]: embedding dimension, attention
dimension, head number, FFN ratio, and network depth. We
constrain the attention dimension (i.e., key, query, and value
matrices) as the 64× head number.

Since the interference between small and large networks de-
grades the performance of the large ones [29], we create two su-
pernets to investigate models with significantly different model
sizes, as shown in Table 1. Two supernets retain most Trans-
former blocks because existing Transformer-based speech pre-
training usually applies deep networks to learn from large-scale
unlabeled data and maintain superior performance, such as 12-
layer HuBERT BASE and 24-layer HuBERT LARGE. To clarify,
we denote aLargest, aBASE, and aSMALL as shown in Table 2.

3.2. Pre-Training Distillation

We employ a masking-based pre-training distillation to transfer
the knowledge of a pre-trained model. Specifically, we mask
spans of latent speech representations in the student model and
make the student model predict masked parts as the output of
the teacher model. Inspired by [13], we introduce contextu-

1687



Table 1: Two supernets of once-for-all Transformers.

Small Base

Embedding Dim {256, 384, 512} {512, 640, 768}
Head Number {4, 6, 8} {8, 10, 12}
FFN Ratio {3.0, 3.5, 4.0} {3.5, 4.0}
Network Depth {10, 11, 12} {12}
Parameters Range 11M – 45M 41M – 95M
Subnets Size 9.5 × 1011 6.5 × 109

Table 2: Frequently used items.

Symbol Description

aLargest The largest architecture as the HuBERT BASE size.
aBASE 12-layer 640-embedding 10-head 2560-FFN subnet.
aSMALL 12-layer 384-embedding 6-head 1536-FFN subnet.
OFA HuBERT Once-for-all training initialized with the pre-trained HuBERT.
LightHuBERT Two-stage training for a once-for-all HuBERT.

alized representations as the training target, i.e., average top-k
normalized latent representations, where we set k = 8 as [13].
Unlike self-distillation in [13], we leverage a pre-trained speech
model as the teacher. Formally, given a downsampled audio
sequence x, the student is to minimize the L1 distance within
masked time steps M as

L
(
f t(x), fs(x̂)

)
=

1

|M|
∑

i∈M

∣∣f̄ t
i (x)− fs

i (x̂)
∣∣, (1)

where f t(·) denotes the teacher, fs(·) denotes the student, x̂ is
the masked x with a masking probability of p = 0.65 as [13],
and f̄ t

i (·) denotes the training target at the i-th time step.

3.3. Two-Stage Training

To improve the performance of different weight-sharing archi-
tectures in the once-for-all Transformer, we propose a two-stage
training strategy as follows.

• Stage 1 - Distillation. We train the largest architecture
aLargest of the once-for-all Transformer from scratch via
the loss function of the pre-training distillation.

• Stage 2 - Once-for-All Training. We implement the
once-for-all training on the supernet initialized by dis-
tilled weights. Specifically, we randomly sample a sub-
net from the supernet at each forwarding propagation
during the supernet training.

The trained weights derived from Stage 1 serve as the ini-
tialization of Stage 2. Compared to existing pre-training objec-
tives that force the top-layer representations to fit the targets,
the pre-training distillation utilizes contextualized representa-
tions that provide receptive fields in different ranges and fea-
ture aggregation with various resolutions, which can be help-
ful to train subnets. For clarity, we define OFA HuBERT and
LightHuBERT as shown in Table 2.

4. Experiments
We conduct our method with pre-trained HuBERT BASE. Pre-
training models and the 10 hours ASR are conducted in fairseq
[30]. The SUPERB tasks are implemented with S3PRL [14].

Table 3: ASR results on aLargest between once-for-all Transform-
ers and HuBERT. ⋆HuBERT BASE is reproduced.

Method dev-clean dev-other test-clean test-other
⋆HuBERT BASE [11] 9.6 16.3 9.6 16.9
OFA HuBERT 10.1 17.4 10.3 17.9
LightHuBERT 9.0 16.4 9.3 16.6
LightHuBERT aBASE 9.4 17.3 9.6 17.5
LightHuBERT Stage 1 8.6 14.5 8.7 14.8

4.1. Experimental Setup

Model. The HuBERT BASE model has a 7-layer temporal con-
volution, 1-layer convolutional position, and a 12-layer Trans-
former encoder. The pre-trained weights are downloaded from
[30]. Distilled student models have a similar architecture with
an additional prediction head that predicts the training targets.
Datasets. For the pre-training task, we use a total of 960 hours
of LibriSpeech audio [31]. For the ASR task, we fine-tune each
model on the 10 hours labeled split of Librilight [32] and report
the word error rate (WER) without a language model. For the
SUPERB benchmark [14], we evaluate the models on ten tasks
with the officially provided datasets, training recipes, and eval-
uation protocols, including PR, ASR, KS, QbE, SID, ASV, SD,
IC, SF, and ER.
Pre-Training. The default pre-training is initialized with either
the publicly released or the re-implemented weights. We pre-
train once-for-all Transformers on 8 V100 GPUs with a batch
size of around 119 seconds of audios per GPU for 200k steps,
where the downsampling CNN is frozen to significantly reduce
training time. Distilling aLargest from scratch is implemented on
32 GPUs as the HuBERT BASE training recipe.
Search. We randomly search for subnets of the pre-trained
models with the pre-trained distilled objective given parame-
ters. For each pre-trained model, we search for 1,000 subnets.
Besides, the minimal and maximal subnets are evaluated to es-
timate the potential performance bounds. Three architectures,
i.e., aLargest, aBASE, and aSMALL, are selected manually for evalu-
ation on the SUPERB benchmark.

4.2. Automatic Speech Recognition

We conduct the once-for-all Transformer with HuBERT BASE
on the ASR task and evaluate the largest architecture aLargest

from the base supernet. As shown in Table 3, the model of
LightHuBERT at stage 1 outperforms the HuBERT teacher,
which indicates the effectiveness of our distillation targets.
LightHuBERT achieves superior performance than the OFA
HuBERT, and its aBASE achieves comparable performance to the
HuBERT teacher with 29% reduced parameters, which suggests
the two-stage strategy helps learn subnets. On the other hand,
the performance of aLargest slightly degrades in both OFA Hu-
BERT and LightHuBERT after the once-for-all training, prob-
ably due to the interference between small and large networks
caused by the once-for-all training.

To estimate the performance of the trained supernets, we
evaluate some subnets from four trained once-for-all Trans-
formers. These pre-trained Transformers include the OFA Hu-
BERT and the LightHuBERT from small and base supernets.
These subnets include the minimal, the maximal, two manually
selected, and several randomly found architectures. The results
are illustrated in Figure 2. The results of different selected ar-
chitectures illustrate that these once-for-all Transformers obtain
many well-trained sub-architectures. All chosen architectures
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Table 4: Speech pre-training evaluation on the SUPERB benchmark. Metrics include accuracy (Acc%), phoneme error rate (PER%),
word error rate (WER%), maximum term weighted value (MTWV), F1 score (F1%), concept error rate (CER%), equal error rate
(EER%), and diarization error rate (DER%). “Overall Score” denotes the average scores of all tasks as [12]. “Paral.” denotes
paralinguistics. “Distill.” denotes distillation. ⋆HuBERT Teacher is reproduced and is slightly different from the released HuBERT.

Method Params Overall
Score

Content Speaker Semantics Paral.

PR ASR (WER) KS QbE SID ASV SD IC SF ER

PER ↓ w/o ↓ w/ LM ↓ Acc ↑ MTWV ↑ Acc ↑ EER ↓ DER ↓ Acc ↑ F1 ↑ CER ↓ Acc ↑
HuBERT BASE [11] 95M 80.8 5.41 6.42 4.79 96.30 0.0736 81.42 5.11 5.88 98.34 88.53 25.20 64.92
DistilHuBERT [8] 23M 75.9 16.27 13.34 9.21 95.98 0.0511 73.54 8.55 6.19 94.99 82.57 35.59 63.02
⋆HuBERT Teacher 95M 81.1 5.23 6.62 4.96 96.66 0.0879 82.90 4.94 5.45 98.21 88.81 25.30 64.68
Stage 1 Distill. aLargest 95M 81.0 4.15 5.71 4.20 96.82 0.0737 80.01 5.14 5.51 98.50 88.44 25.92 66.25
LightHuBERT aLargest 95M 80.4 4.56 6.43 4.80 96.40 0.0642 77.58 5.43 5.85 98.21 88.78 25.32 64.93
LightHuBERT aBase 68M 80.4 4.71 6.72 4.97 95.75 0.0767 77.24 5.55 5.73 98.00 88.79 26.06 65.55
LightHuBERT aSmall 27M 79.1 6.60 8.33 6.04 96.07 0.0764 69.70 5.42 5.85 98.23 87.58 26.90 64.12
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Figure 2: ASR results of the test-other between LightHuBERT
and OFA HuBERT. Green and blue histograms denote the dis-
tributions of parameters of subnets sampled from the small and
base supernets, respectively. We evaluate six subnets found
by the random search in the LightHuBERT. Three of them are
found given 15M, 25M, and 37M parameters in the small su-
pernet, and the others are found given 47M, 65M, and 87M
parameters in the base supernet.

from LightHuBERT outperform the networks from OFA Hu-
BERT, which represents the superiority of the two-stage train-
ing strategy.

4.3. Universal Representation Evaluation

To provide a comprehensive testbed for the generalizability of
our compressed pre-trained models, we evaluate four models
derived from LightHuBERT on the SUPERB benchmark. As
shown in Table 4, we can draw the following conclusions:
(1) The proposed LightHuBERT can create compressed mod-
els that retain comparable performance on the SUPERB tasks.
The aSMALL with around 28% parameter achieves only a 2 point
drop in overall score, which significantly outperforms Distil-
HuBERT by an absolute improvement of 3.2 point. (2) The
LightHuBERT at Stage 1 achieves superior performance than
the HuBERT teacher in five tasks while maintaining comparable
performance in other tasks, which demonstrates the effective-
ness of the proposed pre-training distillation to learn universal
speech representations. (3) We find the aSMALL achieves 3.5×
compression ratio in KS, ASV, and IC tasks with a slight accu-
racy loss, and the aBASE attains comparable performance with
the HuBERT teacher by saving 29% parameters in most tasks
such as PR and ASR, which indicates that the model size could
vary across SUPERB tasks.

Table 5: Ablation study with aBASE from the base supernet. We
report WER (%) on the ASR task without a language model.

Method test-clean ↓ test-other ↓
LightHuBERT 9.6 17.5

- Stage 1 Distillation 13.3 (+3.7) 22.4 (+4.9)
- Stage 2 Once-for-All Training 12.2 (+2.5) 22.8 (+5.3)

4.4. Ablation Study

As shown in Table 5, an ablation study is conducted to investi-
gate the pre-training distillation and the once-for-all training by
evaluating the aBASE on the ASR task. The performance of the
pre-trained aBASE drops consistently without either pre-training
distillation or once-for-all training, which suggests that both
pre-training distillation and once-for-all contribute to improv-
ing the supernet. Both stages significantly enhance the perfor-
mance of the subnet aBASE by over 20% relative improvement in
WER, which reveals that initializing weights and sampling di-
verse subnets during training help obtain well-trained networks.

5. Conclusion
In this paper, we propose LightHuBERT, a once-for-all Trans-
former compression framework to produce many pre-trained
models in different sizes, making it available to run pre-trained
models under various computational resources. Experiments
with the pre-trained HuBERT BASE on the 10 hour ASR task
and the SUPERB benchmark demonstrate the effectiveness of
the proposed LightHuBERT. Considering different parameters,
the distilled model achieves superior performance compared to
the HuBERT BASE teacher in most speech tasks with the size of
the teacher model. LightHuBERT obtains comparable perfor-
mance to the HuBERT teacher in most tasks with 29% reduced
parameters. We achieve a 3.5× compression ratio in ASV,
KS, and IC tasks with a slight accuracy loss while outperform-
ing DistilHuBERT by an absolute improvement of 3.2 point
in terms of the overall score. In future work, we will jointly
employ parameter compression [33] and task-dependent model
compression [18] to further compress the pre-trained model.
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