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Abstract

Reducing the burden of documentation physicians are re-
quired to do with speech understanding is a challenging and
worthwhile goal with the potential to improve care. When tran-
scripts of doctor-patient conversations are available, automatic
summarization with deep neural networks is one promising so-
lution to reducing documentation workload. We develop an
“extract-and-abstract” approach to automatic generation of the
History of Present Illness (HPI) section in clinical notes with
BART: we train a classifier on annotated data to predict a clini-
cal section each utterance is most relevant to; we then utilize the
trained classifier to select only utterances from conversations
relevant to HPI to be considered as input to BART for sum-
marization; we experiment with additional filtering methods on
selected utterances to further reduce input truncation due to the
token limit of BART model. Results show that the generated
summaries from our approach improve in both ROUGE scores
and extracted medical concepts over previously published re-
sults. Considering the improvement is achieved with a relatively
small set of doctor-patient conversations, we expect further im-
provement with more labeled data in the future.

Index Terms: medical conversations, topic detection, conver-
sation summarization, natural language generation

1. Introduction

In recent years, automatic abstractive summarization of Doctor-
Patient Conversations (DoPaCos) into clinical notes has gained
momentum in research in both healthcare and machine learning
communities [1, 2, 3, 4]. It builds on the recent success of deep
neural network based models (PGNet[5], T5[6], Pegasus[7],
BART][8], to name just a few) on the summarization task of
public domain data such as news articles, and offers a potent so-
lution to reducing documentation workload of both physicians
and medical scribes working with modern Electronic Health
Records (EHR) systems [9].

Conversations such as DoPaCos exhibit natural topic-
segmented structure: for documentation purpose, doctors tend
to guide the conversation topic in order to obtain required infor-
mation in a loosely stable order from the patient (e.g., diagnosis
followed by assessment then plan). There is extensive study on
incorporating topic structures in the training of summarization
models: Topic-aware PGNet [10] assigned topic-level attention
weights on the pointer side of PGNet during training; Dr Sum-
marize [3] produced a topic specific snippet dataset from com-
plete conversation to help guide the training of PGNet model;
QMSum [11] forced model training to generate relevant sum-
maries from meeting notes based on a topic query. For DoPaCo
summarization in particular, the section structure of EHR and
clinical notes has also been a source of prior knowledge peo-
ple inject into the model training process: Krishna et al [4]
trained a classifier to first extract “noteworthy” utterances from
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input conversation for each note section, clustered them and
then adopted a summarizer to generate single summary sen-
tence from each cluster when generating a SOAP note [12].
Zhang et al [13] focused on History of Present Illness (HPI) sec-
tion summarization and divided input conversation into chunks
in a two-stage framework to better utilize long context as well as
to overcome the input length limit of transformer-based models.
In this paper, we propose an extract-and-abstract approach
to the task of summarizing HPI section of a clinical note from
DoPaCos, inspired by [4, 13]. Unlike the automatic algorithm
in [13] or the requirement of extensive human annotations with
a large label set in [4], our method incorporates a lightweight
utterance labeling task with only four clinical section labels; a
classifier is trained on the annotated corpus and is employed in
the selection of HPI-relevant utterances (extract); only the se-
lected utterances are considered as candidate input for training a
summarization model (abstract). Different from [4], we trained
the summarization model to generate complete HPI notes in-
stead of individual sentences. To alleviate input truncation lim-
ited by the transformer model (1024 tokens by BART), we pro-
pose both Adaptive Thresholding and Slicing methods to filter
additional utterances selected by the extractive classifier while
maintaining the most relevant information. We hypothesize that
such an extract-and-abstract approach should help summariza-
tion by removing distracting information from DoPaCos, along
with an easy-to-implement pipeline design in mind (Figure 1).

2. Dataset

We use two disjoint datasets in this paper to accommodate the
extract and abstract components in our proposed approach. For
training our utterance selection models (Section 4.1), We em-
ployed in-house linguists with medical knowledge to label each
utterance in DoPaCos with one of three Span Labels: iphi, pe,
a/p, which stand for inclusive HPI', Physical Examination and
Assessment & Plan, respectively. See Table 1 for an example.
We coined the term Span Label to emphasize the requirement
for our annotators that each label should span at least three con-
secutive utterances in one conversation”. This reflects the intrin-
sic continuity of topical information within neighboring utter-
ances, while keeping utterances of one annotated class linguis-
tically coherent to a certain degree. The final annotated corpus
contains 915 de-identified DoPaCo transcripts, which we split
by 606(292)-161(240)-148(262) into train-dev-test sets. The
numbers in parentheses mark the average number of utterances
per conversation in each set. In training set the numbers of utter-

Contents in conversations that we deem relevant to history of
present illness and review of system of the patients.

2We also defined a separate set of labels for more localized informa-
tion, usually within one utterance. The complete annotation framework,
guideline design, and dataset quality analysis is detailed in a separate
paper in the process of publication.
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Figure 1: Pipeline of supervised learning approach in utterance selection and summarization.

ances for each class are: 68426 (ihpi), 9809 (pe), 76412 (a/p),
and the remaining utterances are given a null label. We refer to
this corpus as Dataset E.

Dataset A, which we used for fine-tuning our summariza-
tion model in the abstract component (Section 3.2), contains a
total of 1342 de-identified DoPaCos with an average of 16 hu-
man written HPI summaries per conversations, which we split
into 939(15043)-201(3095)-202(3450) for train-dev-test. The
numbers in parentheses are the number of reference summaries
in each set. All summaries were created by medical scribes lis-
tening to the conversation audios and recorded via an in-house
simulated EHR system. We choose to focus on HPI section
for summarization due to reported success by [13] and the fact
that scribes are instructed in this section to write coherent para-
graphs which are suitable summarization targets. Dataset A has
no overlapping conversations with Dataset E. We believe this
setup should prevent the utterance selection models overfitting
to the summarization data, and can test the flexibility of data
requirement in our proposed extract-and-abstract approach.

3. Methods

We propose an extract-and-abstract pipeline (Figure 1) to the
task of HPI summarization of DoPaCos. Two models: utterance
selection model and summarization model (the first and third
steps in Figure 1) are of key importance in our approach.

3.1. Utterance selection models

The goal of the utterance selection model is to filter utterances
unrelated to HPI from DoPaCos by predicting the span label of
each utterance. Such a task can be solved as either (a) sentence
classification or (b) sequence tagging. We experimented with
both paradigms, and described as follows the details of three
utterance selection models trained on Dataset E.

3.1.1. Sentence classifier

The baseline model we experimented with is a BERT-based [14]
neural network with MLP layers and a 4-way softmax layer on
top (BERT+MLP); the input to the MLP layers is the vector rep-
resentation of the [CLS] token from the top layer of BERT. We
treated the utterance selection as simple sentence classification
problem and fine-tuned the model (both BERT and MLP layers)
on individual utterances prefixed by speaker roles, e.g. [DR]:
how are you today?, with the associated span label as targets.
This is also referred to later on as a Context (N=0) model.

3.1.2. Context model

In order to incorporate contextual information which is key to
utterance label prediction, while maintaining the task as sen-
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tence classification, we adopted the same BERT+MLP model
architecture as the Context (N=0) model, but changed the input
from a single utterance to concatenation of several consecutive
utterances, and the target was chosen as the label of the last
utterance. Furthermore, we concatenated all utterances from
all conversations in the training set and used a sliding window
scan with stride 1 to generate training examples. We set the
maximum input length to be 128 tokens and tuned the window
length of the context, i.e. the number of preceding utterances to
include, within a limited set of values (N <= 9). Four lead-
ing utterances lead to the best performing classifier, which is
reported in this paper and we refer to it as Context (N=4) model
in the following text.

3.1.3. Sequence model

We experimented with training the utterance selection model as
a sequence tagging problem, which is more aligned with the
annotation task and takes more direct account of both conversa-
tion context and correlation between labels. The model archi-
tecture is BERT+LSTM+CREF with a sequence of utterances as
input. Each utterance is fed through the BERT model to obtain
the token-level vector representation, which is then averaged
across all tokens into an utterance level representation. The se-
quence of utterance-level representations is then passed through
the two LSTM [15] layers with hidden dimensions tuned to 50
followed by a linear layer to project the representation of each
utterance down to a 4-dimensional vector. Finally, the Linear-
chain CRF layer [16, 17] receives the vector representations and
predicts the label of all utterances in the sequence. The tar-
get is the corresponding sequence of ground truth span labels.
During training, we froze the weights of the BERT model and
only fine-tuned weights in the rest of the model.> The length
of the sequence (number of utterances) was chosen to be 30
by hyperparameter tuning; samples were generated using the
same sliding-window approach as with Context (N=4) model
with window size 30 and stride 1.

Since the trained model predicts a label for every utterance
in the input sequence, at inference time one utterance will get
multiple predictions from all sequences that contain it. The
final label for the utterance is determined by majority voting.
We denote this utterance selection model as Sequence model.
During training, we observed that using model weights of pre-
trained BERT led to weak model performance. This observation
is not surprising considering off-the-shelf BERT is pre-trained
on public domain text such as news and there is a significant
domain shift to medical conversations. We therefore chose to

3End-to-end finetuning of BERT+LSTM+CRF would require sev-
eral passes of the BERT model for each input sequence, and can easily
lead to out-of-memory error in a straightforward implementation.



use the model weights from BERT fine-tuned in our best per-
forming context model as described in Section 3.1.2 and the
final results in Table 2 showed this yields the best performing
utterance selection model.

Table 1: An example conversation with annotated span labels

Conversation Transcript Span labels
[DR]: lot of pain little pain no pain? ihpi
[PT]: no pain. ihpi
[DR]: so there’s a couple ways we can play this. | a/p
[DR]: I think you’re right on track with it. alp
alp

[DR]: I'd just keep that up.

3.2. Summarization model

We adopted BART [8] as our summarization model based on
its previous success in summarizing DoPaCos [13]. We settled
with the BART-large model architecture and conducted fine-
tuning of BART model on Dataset A in the same way as the
single-stage fine-tuning as detailed in [13]. One major differ-
ence from [13] is that we fine-tuned the model using all avail-
able reference summaries in Dataset A instead of using a single
reference per conversation.

One important consideration (third module in Figure 1) in
our proposed extract-and-abstract approach is the filtering of
utterances in DoPaCo based on span labels predicted by the ut-
terance selection model. Intuitively, one would consider keep-
ing all utterances predicted by the model as ihpi and concate-
nating them as the input to BART. However, we observed that
31.4% of the conversations exceed the 1024 token limit for
BART model, even after filtering non-ihipi utterances (Figure
2 (a)). Therefore, we applied the following additional filtering
methods to circumvent the truncation problem*:

Direct Truncation. For each C:, we keep selecting each
utterance in order until the combined word count exceeds the
token limit. The remaining utterances are discarded.

Adaptive Thresholding (Ada. Thr. N).
For each (C; and seven different threshold values
T [0.7,0.8,0.9,0.95,0.96,0.97,0.98], we keep only
utterances with P(S) > T the seven threshold values are
applied sequentially until either the remaining combined
utterances are within the preset input limit (/V 320 or
N 640 words) or all seven threshold values have been
exhausted. This adaptive thresholding is only applied to filtered
conversations with |Cy| > 1024.

Slicing. For filtered conversations with |C;| > 1024, we
split the utterances into consecutive chunks Cf,, Ct,, -+, C,
such that |C,| < 1024. We add special token ‘— at the begin-
ning of C,, - - - , Cy,, to indicate this is not a new conversation.
Each chunk is matched to the same reference summary and used
as separate samples in training BART. During inference, only
Cy, is adopted and we get one summary for each DoPaCo.

Figure 2 shows histogram of word count of the filtered con-
versations with (Figure 2(b) - 2(c)) additional filtering and with-
out (Figure 2 (a)). We can see the truncation problem per-
sists with filtered conversations, but is basically avoided with

4To simplify notation, we denote probability thresholds as 7T, utter-
ances as .S, one conversation with only predicted ihpi utterances as C',
|C¢| as the token count of the filtered conversation, and P(.S) as the
ihpi-class probability output by the utterance selection model on utter-
ance S.
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Figure 2: Word count histogram per training example (conver-
sation) for the summarizer. Complete utterances are selected
by (a) ihpi classifier predictions. (b) Adaptive Thresholding. (c)
Slicing. The red vertical line shows the 640 word limit of sum-
marizer input.

additional filtering. For comparison, we also considered two
model-free utterance selection strategies: using the first 320/640
words (=~ 512/1024 tokens) in a conversation as the input
to BART (Single stage first 320/640); and using the last 640
words (Single stage last 640)).

4. Experiments & Results

In this section we discuss the performance and evaluation of
the utterance selection model and BART. For utterance selec-
tion models, we report F1 scores for all three span label classes;
for summarization (BART), we choose ROUGE [18] to mea-
sure the similarity between generated and reference summaries.
Since multiple references exist for every DoPaCo, we report
a mean-of-mean rouge score similar to [13]°. In addition, we
choose to include a concept-based metrics (precision, recall,
and F1) using concepts extracted from both reference and gener-
ated summary by quickUMLS®, which is a Python implemen-
tation of Unified Medical Language Systems (UMLS)’. We be-
lieve this metrics complements the lexical similarity measured
by ROUGE with a focus on the agreement in key medical infor-
mation.

4.1. Utterance selection models

Table 2 lists the F1 scores for all span label classes across three
utterance selection models proposed in Section 3.1. We can see
that both Context model (N=4) and Sequence model improve
greatly above the baseline Context model (N=0), with 10% and
12% relative improvement in F1 scores for ihpi class, respec-
tively; the F1 scores on the other two minor classes are also
much improved, indicating improved model robustness against
class imbalance. Since the downstream task in summarization
was focused on HPI section, we were mostly interested in the
model performance in ihpi class and decided to consider both
Context model (N=4) and Sequence model as utterance selector
in our summarization pipeline.

In Section 3.2 we introduce multiple additional filtering
methods over utterances predicted with iApi label. In the case of
Adaptive Thresholding, we chose to apply it only to predictions
made by Context model (N=4). This is because Sequence model
applied majority voting when predicting utterance labels, and
calculating class probabilities of one utterance present in multi-
ple sequences is not as straightforward as in the Context model
(N=4).

5Mean-of-mean rouge: average the rouge scores between generated
summary and all reference summaries for one conversation, and then
average again across all conversations.

Shttps://github.com/Georgetown-IR-Lab/QuickUMLS

7https://www.nlm.nih.gov/research/umls/index.html



Table 2: Span label prediction F1 scores on Dataset E test set.
(Note: w. avg. stands for weighted average.)

| alp  pe ihpi  w. avg.
Context model (N=0) | 0.74 049 0.64 0.67
Context model (N=4) | 0.82 0.76 0.74 0.78
Sequence model 0.84 0.79 0.76 0.81

4.2. Evaluation

Table 3 records ROUGE scores of BART generated summaries
given different utterances selected by the utterance selection
model. quickUMLS evaluation results are presented in Table
4. There are four groups of experiments in both tables. The
first group shows results from the Direct truncation and Slic-
ing method. The second and third groups feature the Adaptive
Thresholding method over 320 and 640 word limits with side-
by-side results from model-free selection strategies with the
same word limits. The last group is cited from [13] and reflects
BART performance by using a single reference per DoPaCo
during training. As can be seen, our models consistently im-
prove over [13] by both ROUGE and quickUMLS evaluation.

In the first group, the Slicing method on Context model
(N=4) shows the best ROUGE scores among all model-based
filtering methods although its advantage is marginal (0.3% in
ROUGE-L F1 over the runner-up). Adaptive Thresholding with
the first 640 words on Context model (N=4) achieves better
ROUGE scores than Direct truncation of both utterance selec-
tion models. The same trend also holds with quickUMLS met-
rics: Slicing on Context model (N=4) yields the best F1 with
more than 2.2% increase over the second-best model (Sequence
model with Direct truncation). The sequence model does not
show an advantage over the context model although it performs
the best in span label prediction.

Comparing groups two and three, we find that models based
on the first 640 words of a conversation always perform better
in both ROUGE and quickUMLS than their counterparts us-
ing only the first 320 words. In addition, the worst-performing
model in both metrics is the Single stage last 640 baseline. We
believe this indicates that BART can benefit from a longer con-
text in the input, but is also exposed to a position bias that tends
to favor early utterances in the conversation. This agrees with
our domain knowledge that most diagnosis of a patient’s condi-
tion tends to occur early in DoPaCos.

One finding to our surprise is that the Single stage first 640
baseline achieves the highest ROUGE-2 and ROUGE-L scores;
this seems to contradict findings in other work (e.g. [4]) that fil-
tering non-relevant information from input should help improve
summarization. Although our utterance selection models may
contribute to errors in the filtering of non-ihpi utterances, we
believe the incoherence or conversational “gaps” in the filtered
utterances is also a confounding factor that may diminish the
effectiveness of the extract-and-abstract approach. However,
this finding needs to be taken with a grain of salt, as we also
observed that the baseline model doesn’t perform as well as our
Slicing method on Context model (N=4) in terms of concept-
based evaluation (Table 4, 4th and 8th row), showing as much
as 3.4% decrease in the precision score. One may argue that
the Slicing method may benefit from an augmented training set
since all sliced chunks were included in the training as sepa-
rate samples, but we didn’t observe similar improvement when
applying the method to Sequence model. A more probable ex-
planation could be different chunks provide different “views” of

2491

the same conversation during the BART training, and can guide
the model to be more robust against the lexical variability of
certain medical information (e.g. description of a symptom) in
conversations.

Table 3: “Mean-of-mean” ROUGE scores [13] over test set. *
denotes the Baselines; R-1, R-2 and R-L stand for ROUGE-1,
ROUGE-2 and ROUGE-L respectively.

\ R-1F1 R-2F1 R-LF1
Sequence model (Direct truncation) 0.3283  0.1173  0.3367
Sequence model (Slicing) 0.3276  0.1184  0.3351
Context model (N=4) (Direct truncation) 0.3349  0.1193  0.3417
Context model (N=4) (Slicing) 0.3371 0.1198  0.3445
Context model (N=4) (Ada. Thr. first 320) | 0.3232 0.1126  0.3302
Single stage first 320 * 0.3259 0.1163  0.3356
Context model (N=4) (Ada. Thr. first 640) | 0.3370  0.1202  0.3420
Single stage first 640 * 0.3362  0.1246  0.3449
Single stage last 640 * 0.3056  0.1040  0.3139
Multistage Chunking [13] 0.3227 0.1144  0.3302
Single stage [13] 03131  0.1097  0.3281

Table 4: quickUMLS evaluation of BART-Large models over the
Test set. (Note: * denotes the Baselines in this study. Ada. Thr.
stands for Adaptive Thresholding.)

\ F1 P R
Sequence model (Direct truncation) 04314 0.6452 0.3871
Sequence model (Slicing) 0.4201 0.6227 0.3742
Context model (N=4) (Direct truncation) 0.4303 0.6303 0.3850
Context model (N=4) (Slicing) 0.4534  0.6596  0.4069
Context model (N=4) (Ada. Thr. first 320) | 0.4028 0.6287 0.3496
Single stage first 320* 0.4376  0.6317  0.4007
Context model (N=4) (Ada. Thr. first 640) | 0.4224 0.6295 0.3718
Single stage first 640* 0.4440 0.6251  0.4049
Single stage last 640* 0.3615 0.5354 0.3202
Multistage Chunking [13] 0.4052  0.5316  0.3948
Single stage [13] 0.4093 0.5212  0.4009

5. Conclusions

We investigated an extract-and-abstract approach to automatic
summarization of History of Present Illness from doctor-patient
conversations. We utilized a corpus of DoPaCos with utterances
annotated with clinical section labels to train an utterance se-
lection model and employed the trained model in filtering irrel-
evant utterances in the input to the downstream summarization
task with BART model. We proposed Adaptive Thresholding
and Slicing methods as optional additional filtering steps and
showed that using Slicing to further filter utterances relevant to
HPI can lead to improved ROUGE and concept F1 scores.

Although we didn’t observe a consistent improvement of
our approach over the baseline approach of truncating in-
put conversations, the extract-and-abstract approach did show
improvement in concept-based evaluation with comparable
ROUGE scores. This improvement indicates the generated
summaries from our extract-and-abstract approach achieve bet-
ter coverage of critical medical information. Given the limited
data for our experiments, we believe our findings encourage fur-
ther investigation of this approach in the domain of automatic
medical summarization; and its effectiveness could be better
supported with improved datasets and different summarization
targets.
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