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Abstract
Perception of auditory events is inherently multimodal rely-
ing on both audio and visual cues. A large number of ex-
isting multimodal approaches process each modality using
modality-specific models and then fuse the embeddings to en-
code the joint information. In contrast, we employ heteroge-
neous graphs to explicitly capture the spatial and temporal re-
lationships between the modalities and represent detailed in-
formation about the underlying signal. Using heterogeneous
graph approaches to address the task of visually-aware acous-
tic event classification, which serves as a compact, efficient
and scalable way to represent data in the form of graphs.
Through heterogeneous graphs, we show efficiently modelling
of intra- and inter-modality relationships both at spatial and
temporal scales. Our model can easily be adapted to differ-
ent scales of events through relevant hyperparameters. Exper-
iments on AudioSet, a large benchmark, shows that our model
achieves state-of-the-art performance. Our code is available at
github.com/AmirSh15/VAED HeterGraph
Index Terms: Acoustic event classification, graph neural net-
work, heterogeneous graph, multimodal data.

1. Introduction
Audio perception by humans is inherently multimodal in nature.
It involves processing both aural and visual cues. Visual cues
are important not only for audio source localization [1], but also
for improving audio perception [2]. Perceptual studies have also
revealed that visual cues can even change how sound is heard
[3].

The majority of existing works on learning audiovisual rep-
resentations rely on maintaining a tight temporal synchrony be-
tween the visual and audio modalities [4, 5, 6]. Consider a
scene of a bike moving away from the camera. The revving
sound of the bike fades as it moves away. While an audio-only-
based model may not be capable of detecting the fading sound
as ’bike’, taking into account the bike as a visual cue, it is pos-
sible to identify the event as ’motorbike running’. Computer
vision-inspired models are common [7, 8, 9], where two aug-
mented views of a given audio/audiovisual sample are fed to
a shared ‘backbone’, followed by optimizing a contrastive loss
[10, 11, 12, 13, 14], distillation [14, 15], quantization [4] or in-
formation maximization [16, 17]. However, the vision-inspired
audio representation learning methods do not take full advan-
tage of the temporal information available in video data or the
complementary knowledge between modalities. Another diffi-
cult aspect of such approaches is that data augmentation func-
tions, being vision-inspired, are not often well-suited to a mul-
timodal input.

Heterogeneous graphs are a compact, efficient. and scal-
able way to represent data involving multiple different entities

and their relations [18, 19]. Modelling the interaction of enti-
ties (including modalities) with heterogeneous graphs is a rela-
tively new paradigm. Multimodal heterogeneous graphs have
been successfully used to address various problems in com-
puter vision and natural language processing, such as visual-
question answering [20], multimedia recommendation [21, 18],
audio-visual sentiment analysis [22], and cross-modal retrieval
[19]. Multimodal heterogeneous graphs lead to a closer cou-
pling between concepts in multiple modalities, resulting in a
significant performance improvement over previous methods
[20, 21, 22, 18]. Motivated by the success of graph-based
methods in multimodal problems , we propose a heterogeneous
graph-based approach to learn visually-aware audio representa-
tions.

In this paper, we propose a visually-aware audio represen-
tation learning approach based on heterogeneous graphs (see
Fig.1 for an overview) in the context of acoustic event classifi-
cation. Our heterogeneous graph model creates a shared space
for audio and visual modalities that takes advantage of their spa-
tial and temporal relationships explicitly. We first model the
input audiovisual clip as a heterogeneous graph with two sub-
graphs, one for each modality with edges capturing inter- and
intra-modality relationships. We next develop a heterogeneous
graph neural network which is able to capture rich audio rep-
resentation incorporating complementary information from the
visual information. Our contributions are as follows:

• We develop a graph construction method for converting
an audiovisual clip to a multimodal heterogeneous graph.

• We propose a novel heterogeneous graph neural network
(HGNN) that can capture modality-specific information
as well as complementary information between modali-
ties.

• We demonstrate improved performance by our model
for the task of acoustic event classification on the large
benchmark AudioSet dataset.

2. Proposed Approach
This section describes our proposed approach for visually-
aware audio representation learning. First, we construct het-
erogeneous graphs to represent the audiovisual data consisting
of modality-specific subgraphs and inter-modality edges. Next,
we propose a heterogeneous graph neural network (HGNN) ar-
chitecture that performs graph classification in the context of
acoustic event classification.

2.1. Heterogeneous graph construction

Our first task is to construct a heterogeneous graph G =
(V,E, O,R), where V represents the set of nodes, E the set of
edges, O is the set of node types (object/modality), and R is the
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Figure 1: (Left) Heterogeneous graph architecture. We split the input audio and video clip into Q and P overlapping segments and
then construct the heterogeneous graph containing intra- and inter-modality edges between nodes. Each edge type is considered and
processed by the corresponding GNN. For both audio and video modalities, heterogeneous graph convolution layers are utilised to
extract the embedding for each node. Separate learnable pooling modules are then used to capture the overall graph representation.
(Right) Heterogeneous graph layer has two independent audio and video flows taking into account intra-modality edges, as well as an
attention layer connecting video nodes to audio nodes considering inter-modality edges.

set of edge types, where |O| + |R| > 2. Each node v ∈ V is
associated with a node type and each edge e ∈ E is associated
with an edge type.

Given an audiovisual input, we uniformly divide the video
frames and the audio into P and Q segments (see Fig.2). The
segments are used for feature extraction. Then, given the video
and the audio segments, we construct a heterogeneous graph
with node sets Vv = {vi}Pi=1 and Va = {ai}Qi=1, with edge sets
E = {Evv,Eaa,Eva}, which represent edges between video-
only nodes, audio-only nodes, and between audio-video nodes
respectively. These corresponding adjacency matrices are de-
noted as Av , Aa, and Ava. Each node vi ∈ Vv corresponds to
a video segment and its associated feature vector is nv

i ∈ Rdv .
Similarly, an audio node ai ∈ Va is associated with feature vec-
tor na

i ∈ Rda . Since the graph structure is not naturally defined
here, we propose to add inter- and intra-modality edges (see
Fig. 2). Additionally, Our graph has two parameters for each
edge type, i.e, for Evv,Eaa,Eva: (i) span across time and (ii)
dilation. The former denotes the number of nodes connected to
each node in the temporal direction, whereas the latter denotes
leaps between nodes. In total, we have six hyperparameters for
graph construction.

2.2. Heterogeneous graph neural network (HGNN)

Given heterogeneous graphs G1, ..., GN and their ground-truth
labels y1, ...,yN , the task is to learn a d-dimensional graph rep-
resentation hGi ∈ Rd that captures rich structural and semantic
information in Gi.

The key idea of most GNNs is to aggregate feature informa-
tion from a node’s neighbours and then update the node feature
vector:

Hk+1 = σ
(
AHkW

)
(1)

where W(k) is the weight matrix for the kth layer of the GNN,
σ is a non-linear activation function, such as ReLU, and k is the
layer number (k = 0, · · ·K). Because of the various node and
edge types, this approach is not directly applicable to our het-
erogeneous graphs. Previous studies utilise meta-paths for pro-
cessing heterogeneous graphs [23, 24], which has been shown
to be inadequate to properly exploit the information provided
by node and edge types [25]. To overcome this, we use separate
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Figure 2: Heterogeneous graph construction process. For sim-
plicity, the edges are only shown for vi and vj . Similar connec-
tions are added for each node.

GNNs for processing different edge types.
Our HGNN has three flows of information corresponding to

the intra- and inter-modality edges as shown in Fig.1. Audio and
video flow process the audio and video nodes by considering
only intra-modality edges (Evv,Eaa) between audio and video
nodes, respectively. The third flow carries audio-related infor-
mation from video nodes to audio nodes for the inter-modality
edges (Eva):

na
l+1 = GNNθ1

(
na
l ,Aa

)
+ GNNθ2

(
nv
l ,Ava

)

nv
l+1 = GNNθ3

(
nv
l ,Av

) (2)

where na
l and nv

l are audio and video node features in layer l,
and GNN is a graph-based neural network such as GCN [26]
or GAT [27]. The video nodes are only updated using video
nodes from the previous layer, as demonstrated in the Eq. 2. As
audio is the primary source of information in this application,
unlike the video branch, the audio nodes are updated using both
the audio and video nodes from the preceding layer, bringing
information from the video to the audio modality.

Our objective is to classify entire graphs, as opposed to the
more common task of classifying each node. Hence, we seek a
graph-level representation hG ∈ Rd as the output of our net-
work. This can be obtained by pooling the node-level represen-
tations na

K , nv
K at the K-th layer before passing them to the
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classification layer (see Fig.1). Common choices for pooling
functions in the graph domain are mean, max, and sum pooling
[26]. Max and mean pooling often fail to preserve the underly-
ing information about the graph structure, while sum pooling
has been shown to be a better alternative [28]. However, all
these pooling functions treat adjacent nodes with equal impor-
tance, which may not be optimal. To this end and following
[29], we propose to learn a pooling function Ψ that combines
the node embeddings from the K-th layer to produce an embed-
ding for the entire graph. The pooling layer for each modality
is thus defined as follows:

hG =
[
Ψa(n

a
K) |Ψv(n

v
K)

]
= na

Kpa + nv
Kpv (3)

where pa and pv are learnable weights to combine node-
level embeddings to obtain a graph-level embedding for audio
and video nodes. The overall heterogeneous graph network is
trained with focal loss L as we have a unbalanced dataset:

L = −
∑

n

(1− yn)
γ log ỹn. (4)

3. Experiments
In this section, we first discuss the dataset used for benchmark-
ing and feature extraction details. We then present experimental
results and analysis to evaluate the performance of the proposed
HGNN architecture.

3.1. Dataset
We use a large scale weakly labelled dataset AudioSet [30],
which contains audio segments from YouTube videos. We work
with 33 categories from the balanced set that have high rater
confidence score ({0.7, 1.0}). This yields a training set of
82,410 clips. For a fair comparison with baseline methods, we
also use the original evaluation set, which has 85,487 test clips.

3.2. Feature Encoder
Audio Encoder. To extract the audio node features, each audio
clip is divided into 960 ms segments with 764 ms overlap. For
each segment, a log-mel spectrogram is computed by taking its
short-time Fourier transform using a frame of 25 ms with 10ms
overlap, 64 mel-spaced frequency bins, and log-transforming
the magnitude of each bin. This creates log-mel spectrograms
of dimensions 96 × 64, which are the input to the pre-trained
VGGish network [31]. We use the 128-dimensional features
extracted by the VGGish network for each log-mel spectrogram.
Video Encoder. Each video is segmented into non-overlapping
250 ms chunks to extract the video node features. The 1024-
dimensional feature is then obtained by feeding each segment
into an off-the-shelf 3D convolution network, S3D [32] (trained
with self-supervision[33]). Note that our method is not limited
to these pre-trained embeddings and can work with any generic
embeddings for both audio and video.

3.3. Implementation Details
Each video clip produces a heterogeneous graph with P = 40
audio and Q = 100 video nodes, where each node corresponds
to a 960 ms length audio or 250 ms length video segment. We
repeat our experiments 10 times with different seeds and report
both mAP (mean average precision) and ROC-AUC (area un-
der the ROC curve) values. Our network weights are initialized
following the Xavier initialization. We used Adam optimizer
with a learning rate of 0.005, a decay rate of 0.1 after 1500 it-

Table 1: Acoustic event classification results on AudioSet

Model mAP ROC-AUC Params

Ours audio only 0.42± 0.01 0.90± 0.00 1.4M
Ours video only 0.15± 0.02 0.75± 0.01 1.5M
Ours both 0.50± 0.01 0.93± 0.00 2.1M

Baselines

ResNet-1D audio only 0.35± 0.01 0.90± 0.00 40.4M
ResNet-1D both 0.38± 0.03 0.89± 0.02 81.2M
LSTM audio only 0.40± 0.00 0.90± 0.00 0.8M

State-of-the-art

DaiNet [34] 0.25± 0.07 - 1.8M
Spectrogram-VGG 0.26± 0.01 - 6M
VATT [35] 0.39± 0.02 - 87M
SSL graph [36] 0.42± 0.02 - 218K
Wave-Logmel [37] 0.43± 0.04 - 81M
AST [38] 0.44± 0.00 - 88M

erations, and 1000 warm-up iterations for all experiments. We
set γ = 2 (see Eq. 4). The graph construction hyper-parameters
are explored heuristically and set to span audio = 6, dilation au-
dio = 3, span video = 4, dilation video = 4, span audio-visual =
3, and dilation audio-visual = 1 for all experiments. For graph
neural network, we select regular GCNs [26] for each modality
branch and a GAT [27] for fusing information from video to au-
dio branch, resulting in 4 heterogeneous layers (Fig. 1) with a
hidden size of 512 for all layers. We use Pytorch on an NVIDIA
RTX-2080Ti GPU.

3.4. Results and analysis

Baselines. We compare our method with a number of fully
and self-supervised models, as tabulated in Table 1. The
Spectrogram-VGG model is the same as configuration A in
[39], with only one change: the final layer is a softmax with
33 units. The feature for each audio input to the VGG model
is a log-mel spectrogram of dimensions 96×64 computed by
averaging across non-overlapping segments of length 960ms.
We also compared our method with a graph-based work. Each
node in this work represents an audio clip, and a KNN subgraph
has been created, as well as a GNN that is trained using graph
self-supervised proxy tasks [36]. We also use the two popular
spatial and temporal network architectures, ResNet-1D [40] and
LSTM, with pretrained embedding features for both audio and
video as input, to further investigate the superiority of our graph
modelling. All baseline hyper-parameters are set to the values
published in the original papers. Note that we do not utilise
any data augmentation, despite the fact that other methods used
powerful data augmentations. Additionally, all of the baselines
have been retrained using the same classes as our model.
Results. Table 1 reports the mAP and ROC-AUC (averaged
over 10 runs with different seeds) values with standard deviation
for each model and their variants. It compares the performance
of our model with different independent modalities and strong
baselines with that of the heterogeneous model in terms of mAP.
The heterogeneous graph model outperforms the homogeneous
graph and non-graph models. Our method leverages the pre-
trained features as node attributes. Thus, to check the perfor-
mance of our graph-based model, two strong baselines, ResNet-
1D and LSTM, have been selected. Compared to these methods,
our homogeneous graph sub-models achieve a superior mAP
score that demonstrates the effectiveness of our graph-based
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Figure 3: Qualitative results showing attention weights corresponding to the audio nodes for with (in orange) and without (in blue)
video supervision. Each node represents a segment of 100-millisecond duration and the ground-truth label for each video is provided
below. Attention values were normalized and re-scaled to [0,1] range. (a) This video begins with a strong machine firing sound. After
that, a soldier is interrogated, followed by footage of troops. Finally, the machine appears again but is not fired. Even without the
associated sound of shooting, the video-assisted audio nodes are able to recognise the firing machine towards the end by assigning
higher attention weights to these moments. (b) A horse begins neighing and moves away from the camera. As it moves, the sound fades.
The horse is no longer visible or audible as time elapses. The audio-only model incorrectly detects these moments by assigning high
attention values, while the video-assisted model correctly discards these moments. (c) A video of a motorcycle moving. The video-
assisted attention weights suggest that our model can capture additional meaningful patterns, such as the engine start. Furthermore,
as the engine sound fades, the attention weights corresponding to the audio-only model decrease, and the video-assisted attention
weights have relatively higher values indicating that the video information extracted by our model is complementary to the audio event
information.

modelling strategy. Furthermore, when compared to other base-
lines, our heterogeneous graph-based model achieves the great-
est ROC-AUC score (0.93), implying more trustworthy predic-
tions at various thresholds. When compared with the other su-
pervised models, our heterogeneous graph model outperforms
Spectrogram-VGG and DaliNet [34]. Our model also has sig-
nificantly fewer learnable parameters compared with the recent
transformer-based architectures, VATT and AST.
Ablation experiments. We perform exhaustive ablation experi-
ments to investigate the contribution of each component we pro-
pose to build our heterogeneous graph neural network. Table 2
presents the ablation results on the AudioSet dataset. We ob-
serve that each new component brings improvement. In all ex-
periments, model performance is measured with mAP to quan-
tify the recognition rate. The introduction of the heterogeneous
graph increases the recognition rate by about 9%; when com-
bined with our new graph attentional convolution layer between
modalities (right half of Fig. 1), the performance increases to
0.49. Adding the learnable pooling brings up the mAP score to
0.50. Removing the learnable pooling however reduces the per-
formance by about 3% and 1% for audio-only and video-only
models, respectively. The ablation results show that each of the
proposed components in our architecture is important, and con-
tributes positively towards the overall model performance.
Qualitative results. We display how our model attends to dif-
ferent nodes to gain insights into its learning process. Because
each video clip is divided into 100ms segments, each node rep-
resents a 100ms time window. In Fig. 3, we show the attention
weights corresponding to audio nodes in cases of with and with-
out video supervision for three input videos from the test set
with distinct acoustic classes. Then, for each video, we sam-
ple four frames and display them on top of each figure to pro-
vide more visual information. This gives rise to salient nodes
for each input. The results show that the proposed model can

Table 2: Ablation experiments on the AudioSet dataset. Each
new component in our heterogeneous network contributes to-
wards its performance.

Audio Video Attn Learned p mAP

✓ - - - 0.38

✓ - - ✓ 0.41

- ✓ - - 0.12

- ✓ - ✓ 0.13

✓ ✓ - - 0.49

✓ ✓ ✓ - 0.49

✓ ✓ ✓ ✓ 0.50

extract visually complementary information to an audio event
from heterogeneous graphs as input.

4. Conclusion
In this paper, we introduced the idea of hetergeneous graphs
to model audio data with visual cues. We proposed a compact
and efficient graph-based architecture that learns audio repre-
sentations effectively in the context of acoustic event classifica-
tion. We transformed an audiovisual input to a heterogeneous
graph with different learnable hyper-parameters capturing in-
tra and inter modalities connections in both spatial and tempo-
ral domains. Our heterogeneous graph model produces higher
or comparable performance to the state-of-the-art on a popular
benchmark dataset, the AudioSet. Our current model relies on
pre-trained embeddings, which gives the flexibility of choosing
any suitable embeddings. Nevertheless, our model can be made
end-to-end trainable, which will be addressed as part of our fu-
ture work.
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