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Abstract
Recently, feature extraction with learnable filters was exten-
sively investigated with speaker verification systems, with fil-
ters learned both in time- and frequency-domains. Most of the
learned schemes however end up with filters close to their ini-
tialization (e.g. Mel filterbank) or filters strongly limited by
their constraints. In this paper, we propose a novel learnable
sparse filterbank, named LearnSF, by exclusively optimizing
the sparsity of the filterbank, that does not explicitly constrain
the filters to follow pre-defined distribution. After standard
pre-processing (STFT and square of the magnitude spectrum),
the learnable sparse filterbank is employed, with its normalized
outputs fed into a neural network predicting the speaker iden-
tity. We evaluated the performance of the proposed approach
on both VoxCeleb and CNCeleb datasets. The experimental
results demonstrate the effectiveness of the proposed LearnSF
compared to both widely-used acoustic features and existing pa-
rameterized learnable front-ends.
Index Terms: learnable filter, sparse filtering, sparsity, speaker
verification

1. Introduction
In recent years, since deep learning has shown its remarkable
success in speech modeling, more researchers focus on building
deep structures [1, 2] or investigating effective objective func-
tions [3, 4, 5] to extract discriminant speaker representations.
Most of these approaches take hand-crafted acoustic features as
input (e.g. Gammatones, log Mel filterbank (Mel-FBank), Mel
frequency cepstral coefficients (MFCC)), which are inspired
by the human auditory perception mechanism. Even though
such features provide good performance, nowadays’s neural ap-
proaches are powerful enough to re-train also the front ends and
there is no reason to believe that hand-crafted features with fixed
extraction parameters are optimal for all speech-related tasks.

To challenge those hand-crafted acoustic features, there
have been several attempts on designing a learnable front-end
for speaker embedding extractor [6, 7, 8]. Two main approaches
exist: In the signal-based approach, the first block of those
models is expected to model the vocal tract-related character-
istics directly from the raw waveform or spectral features, the
essence of which is a set of learnable filters [6, 8] that are jointly
optimized with the following speaker embedding extractor. In
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[9], a modified convolutional layer composed of parameterized
band-pass filters, named SincNet, is integrated to speaker model
to extract speaker embedding from the raw waveform. Com-
pared to traditional CNN, SincNet takes the advantages of a
parametric model: higher interpretability and fewer parame-
ters [10]. Since SincNet only focuses on the magnitude do-
main while ignoring the importance of phase, in [11], a bank
of complex-valued time-domain filters, which functions as a
proxy for learnable Mel-frequency spectral coefficients, is in-
vestigated for end-to-end phone recognition. The experimen-
tal results on the TIMIT dataset show superior performance
over widely-used acoustic features (e.g. Mel-FBanks, MFCCs).
Sharing a similar idea, [12] explores an interpretable complex-
valued exponential filter (IC filter) for time-domain speaker
verification, which enforces each filter to follow trigonomet-
ric functions parameterized by its center frequency. More re-
cently, in [13], a learnable front-end (LEAF) for audio classifi-
cation has been proposed, which consists of a complex-valued
Gabor filterbank [11], Gaussian low-pass filter, and smoothed
per-channel energy nomination [14]. The system reaches state-
of-the-art performance on the AudioSet benchmark with a slight
advantage over Mel-FBank features.

Secondly, learnable filters have also been developed in the
frequency domain: [15] implements an unconstrained learnable
filterbank, which provides frequency clues for the neural net-
work to reduce the training loss of a frequency prediction task.
In [16], a non-negative restricted learnable filterbank is lever-
aged to detect speaker-related information from the magnitude
spectrum. Through joint optimization with the following clas-
sifier, the learned representation is more robust than manually
designed features in the field of anti-spoofing.

Generally, although features extracted by the aforemen-
tioned learnable filters have shown competitive performances
compared to hand-crafted acoustic features, their advantages are
very limited: with such strong prior signal-processing-related
constraints on filters’ distributions or shapes, each filter has
only a few learnable parameters. Hence it results in a clear
time-frequency structure and high interpretability of learned fil-
ters. However, when analyzing the frequency responses, most
of them just re-learn the Mel-scale. This might be due to strong
constraints on the filter shapes and Mel-scale initialization. This
combination endows the front-end with a fair ability to extract
discriminative features at the beginning of the training process,
while updating only slowly in the following optimization.

In this paper, we address the strong constraints of learnable
front-end for speaker verification, by a learnable sparse filter-
bank (LearnSF). Given speech, only a small fraction of time-
frequency patterns are relevant to speaker identity. In sparse
filtering [17], this could be achieved by activating a few fre-
quency components and reducing others to zero while main-
taining diversity between filters. We start the processing by
windowing and short-term Fourier transform (STFT), convert-
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Figure 1: Proposed LearnSF speaker embedding extractor. The yellow box denotes all coefficients are fixed, while the parameters in
blue box can be updated by the training.

ing speech into time-frequency representation. We convert the
magnitude spectrum to power spectrum, which forms the learn-
able filter’s input implemented as a standard matrix operation
over the power spectrogram. The bank of filters is initialized by
Mel-scale and later jointly optimized with the rest of the neural
network – enforcing the sparsity constraints helps to define fre-
quency regions that are relevant to the SV task while preventing
degenrate solutions. Next, the filtered time-frequency features
are passed through a logarithmic compression, and mean vari-
ance normalization. Furthermore these normalized features are
fed into a neural network to predict the speaker identity. The
experimental results on VoxCeleb and CNCeleb show that the
proposed LearnSF outperforms the widely-used acoustic fea-
tures such as Mel-FBanks, as well as different parameterized
learnable filters based SV systems. Additionally, we show that
our front-end generalizes better in cross-lingual scenario than
hand-crafted acoustic features.

2. Learnable Sparse Filterbank
Figure 1 shows the overall scheme of LearnSF-based SV sys-
tem. We start by standard windowing, STFT and power of two,
to produce a power spectrogram of speech1. Then, the learn-
able filterbank follows; inspired by [17], an objective function
is used to optimize the sparsity of the learned filterbanks. Dif-
ferent constraints, introduction of sparsity to filter learning, and
different initialization methods are discussed in the following
sub-sections. Finally, sequentially, the learned features are post-
processed by logarithmic compression and mean variance nor-
malization (MVN).

2.1. Formalism

The power spectrogram is defined as S ∈ RN×F , where N is
the number of frames, and F is the number of STFT bins from
0 to half of the sampling frequency. The bank of K learnable
filters applied in frequency domain is denoted as V ∈ RF×K ,
with individual filters v1...K(vk ∈ RF×1). The corresponding
time-frequency output O ∈ RN×K is given by:

O = SV, (1)

where F is also the length of learnable filters. In the following,
we will denote the output of k-th filter at n-th frame as On,k.

1In our implementation, to speed up the propagation and enable on-
the-fly wave augmentation, as described in our previous work [12, 18],
we define a 1D convolution layer, named Conv-STFT, as a combination
of window function and DFT kernels, for production of the magnitude
spectrogram

2.1.1. Vanilla filters

In our early experiments, we employed a set of filters using
random initialization without any constraints on parameters to
model the power spectrum. The filters are expected to capture
meaningful frequency bands (see Fig. 2 (b)), however, the train-
ing process of the whole SV system is unstable and the final
performance (see section 3.4) is much worse than Mel-FBank
based system. Also, it is not possible to ensure that the filter-
bank results will be non-negative. Therefore, compression by
logarithm and mean- and variance-normalization (MVN) can
not be applied.

2.1.2. Vanilla filters initialized by Mel-scale

Motivated by the success of learnable filters initialized by Mel-
scale in automatic speech recognition (ASR) field [9, 19], we
introduce Mel-scale to initialize the filters. As shown in Fig 2
(c), the Mel-scale initialization makes the learned filters have
a clearer structure and a slight performance boost is achieved.
However, the filters might still have negative gains, and, as in
the previous experiments, log compression and MVN are not
applicable.

2.1.3. Normalized filter

As [20, 21] point out that non-negative and band-limited con-
straints play an important role in designing filterbank for mag-
nitude inputs. Therefore, we adopt l2-normalization to the pa-
rameters of each filter as:

v̂k = abs

(
vk∑F

f=1 ∥vk[f ]∥2

)
, (2)

where abs(·) denotes taking the absolute value. This operation
ensures positive-valued coefficients of the filterbank. Note that∑F

f=1 ∥v̂k[f ]∥2 = 1 suggests that each filter has the same total
gain, as also shown in Fig 2 (d). This modification leads to a
significant improvement. However, the degree of freedom of
filter coefficients is still high, and they might be prone to over-
fitting in the training process.

2.1.4. Sparse filter

To restrict the coefficients of learnable filters and boost perfor-
mance, we introduce sparsity to the filtering, instead of forcing
filters to follow some pre-defined function (e.g. Gaussian func-
tion [11]) or keep orthogonality (e.g. DFT coefficients). By
sparsity constraints and joint training with neural network pre-
dicting the speaker identity, we expect to obtain filters capable
of capturing speaker-related frequency patterns while staying
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(a) Mel filterbank (b) Vanilla filters [trained from scratch]†

(c) Vanilla filters (Mel - initialized (d) Normalized filters

(e) Sparse filters
Figure 2: Frequency responses of different filters at convergence. Except for Vanilla filters†, all other filters (vanilla filters, normalized
filter, Gaussian filters and sparse filters) are initialized by a Mel scale. We highlight three among 80 filters: the 5th (green), the 20th
(blue) and the 70th (red).

insensitive to other variations. This can be achieved with learn-
able filters where only a few coefficients per-filter are active
(i.e. non-zero) while all the others are close to 0. Intuitively,
this kind of inner-filter sparsity can be directly measured by lp-

norm (i.e. |vk|p = p

√∑F
f=1 ∥υk[f ]∥p) and constrained via an

objective function computed as:

Ldirect =
1

K

K∑

k=1

|vk|p, (3)

where vk is k-th filter. However, such a simple constraint could
only ensure the sparsity of a single filter, while the diversity
across filters is not guaranteed. Inspired by [17], we ensure di-
versity of the filter-bank by penalizing the outputs of the filters
rather than their coefficients. This cross-filter constraint is ex-
pected to prevent degenerate scenarios in which the same pat-
terns are modeled repeatedly. At first, we normalize the filter
response for each time step by dividing it by its l2-norm. Then,
we maximize the sparsity of the learnable filterbank’s response
by employing l1 penalty:

Lindirect =
1

N

N∑

n=1

∣∣∣∣∣∣
On,k√∑K
k=1 O

2
n,k

∣∣∣∣∣∣
1

. (4)

During the training, this objective is optimized by backpropa-
gation with respect to the learnable parameterized filterbank V.

The term On,k/
√∑K

k=1 O
2
n,k normalizes the vector of all filter

responses at time step n to live on the unit-sphere. This suggests
that this penalty is scale-invariant and insensitive to changing
a overall gain of time-frequency features. Moreover, if a few
responses tend to be significant, the others will decrease simul-
taneously. Thus, filters that model similar speaker-related fre-
quency patterns with similar responses would get a high penalty.
Since we also minimize l1 of the filter response, the sparsity of
the learned time-frequency features is maximized.

Formally, the optimization goal of the training process is
given by:

L = Lsv + α(βLdirect + (1− β)Lindirect), (5)

where both α and β are hyper-parameters used to adjust the im-
portance of sparsity, and Lsv denotes speaker classification loss.
For simplicity, we balance the contribution weights of those two
sparsity constraints, i.e. β is fixed to 0.5.

3. Experiments and Results
3.1. Datasets

Experiments are conducted on the VoxCeleb [24, 25] and
CNCeleb [26] datasets. For VoxCeleb dataset, we only use the
VoxCeleb2-dev [25] for model training, while the VoxCeleb1
[24] is utilized to evaluate the performance. The VoxCeleb2
development dataset consists of over 2,000 hours of recordings
from 5,994 English speakers under text-independent scenarios.
CNCeleb is a text-independent Mandarin dataset and collects
more than 130,000 utterances from 1,000 Chinese celebrities.
It amounts to 274 hours in total. The training part involves
800 speakers, while the evaluation part contains 18,849 utter-
ances from 200 speakers. To enrich the diversity, as described
in [27], we augment the original CNCeleb dataset, as well as
VoxCeleb2-dev using RIR and MUSAN datasets.

3.2. Metric

In this paper, both equal error rate (EER) and minimum detec-
tion cost function (minDCF) are employed to measure the per-
formances of speaker verification systems. In consistence with
[24], the target probability Ptar is set to 0.01, Cfa and Cfr share
the equal weight of 1.0.

3.3. Implementation Details

The time-domain raw waveform input is sampled at 16K Hz.
Conv-STFT [12] has 512 complex-valued kernels with a length
of 400 (25ms) and a stride of 160 (10ms). Each parameter-
ized kernel is implemented by the product of a Hamming win-
dow function and a corresponding complex-valued exponential
STFT kernel. The dimension of magnitude output of each frame
is F = 257 = 512/2 + 1. For a fair comparison with other
published works, the total number of filters with different con-
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Table 1: Results on the Voxceleb1-O dataset using different parameterized filters. For a fair comparison, our experimental settings are
consistent with the baselines, only except for the learnable filters.

Model Input Features Parameterized Filter EER (%) minDCF
ResNet34 [12] Magnitude spectrum - 2.51 0.191
Res2Net [22] Mel-FBank - 1.45 0.147

ECAPA-TDNN
Magnitude spectrum - 1.34 0.093
Mel-FBank - 1.17 0.082
MFCC - 1.30 0.086

ECAPA-TDNN Magnitude spectrum

Vanilla filter (from scratch) 1.74 0.127
Vanilla filter (Mel init.) 1.60 0.119
Normalized filter 1.27 0.078
Sparse filter 1.03 0.073

Table 2: Results on the CNCeleb-E dataset and cross-language
VoxCeleb1-O dataset. All the methods are trained on the aug-
mented CNCeleb-dev dataset.

Method α
CNCeleb-E VoxCeleb1-O

EER minDCF EER minDCF
Mel-FBank - 13.27 0.538 11.17 0.538

SF-L1
0.1 12.49 0.536 11.02 0.541
0.3 12.37 0.531 10.79 0.524
0.5 13.01 0.537 10.99 0.536

SF-L2
0.1 12.25 0.539 10.81 0.520
0.3 12.66 0.537 10.71 0.533
0.5 12.27 0.527 10.86 0.536

ICspk [12] 13.12 0.594 N/R N/R
ResNet-DTCF [23] 14.84 0.596 N/R N/R

straints is fixed to K = 80.
We use the ECAPA-TDNN [28] as the estimator of speaker

identity and extractor of 192-dimensional speaker embeddings.
In Table 1, we provide comparison of ECAPA-TDNN with
older baselines. All the models are trained using AAM-softmax
[29] with a margin of 0.2 and a scaling of 30. The Adam op-
timizer is employed with an initial learning rate of 0.001 to
update the parameters of the speaker embedding extractor and
learnable filters. The mini-batch size of 200 is chosen for all
models training. For the back-end, we use cosine similarity.
Our implementations (e.g. training strategies, augmentation,
scoring) are consistent with [12, 27].

3.4. Analysis of different compression methods and param-
eterized filters

Before starting experiments with learnable filters, we compare
older (ResNet34 and Res2Net) baselines, as well as ECAPA-
TDNN system [28] using Mel-FBank and magnitude spectra.
The comparison in the first two sections of Table 1 clearly
shows the superiority of ECAPA-TDNN.

The SV performance of learnable filters is reported in the
last section of Table 1. In addition, we also visualize the sorted
frequency responses of those filters after the convergence in Fig
2. For experiments with unconstrained vanilla filters, it can be
observed that they perform worse than the hand-crafted acoustic
features (i.e. Mel-FBank, MFCC and STFT). It can be also ob-
served (Fig 2 (b)) that the unconstrained filters contain a lot of
sharp peaks and low-valued fluctuation, thus yielding poor per-
formance. When using Mel-scale to initialize the parameters
of filters, a slight improvement is achieved. The normalized

filter clearly outperforms the unconstrained ones and the pro-
posed LearnSF exhibits the best performance among all learn-
able filter-based systems.

3.5. Analysis on CNCeleb dataset

We experiment with various choices of hyper-parameter α and
regularization of the filterbank. According to Eq. 3, two kinds
of regularization are taken into consideration: SF-L1 denotes
the l1-regularization on filter sparsity, and SF-L2 denotes l2-
regularization. Also, the importance of sparsity constraint is an-
alyzed through the SV performance. All the systems are trained
on the CNCeleb dataset and evaluated on both CNCeleb-E and
VoxCeleb1-O. The results are reported in Table 2.

It is observed that both SF-L1 and SF-L2 outperform the
baseline SV model using the hand-crafted acoustic feature (such
as Mel-FBank) on co-language and cross-language conditions.
It suggests the superiority of LearnSF, which can provide an
inductive bias to specific speech tasks. We also observe that
SL-L1 performs slightly worse than SL-L2 in the current set-
tings. This might be because the l1-regularization is not dif-
ferentiable at zero, and hence, the optimization might fall into
difficulty. Compared to other systems, the proposed approach
achieves state-of-the-art performance on the CNCeleb dataset.

At the end of Table 2, we have included the results of two
SOTA techniques evaluated in the CNCeleb-E dataset. ICSpk
utilizes a set of modified complex exponential filters with learn-
able center frequency to model the time-domain waveform. It
performs worse than our systems. This suggests it is difficult to
model the raw waveform directly. Instead, our proposed method
first transforms the time-domain signal into a frequency-domain
and then tend to extract speaker-related pattern, which has the
potential to guide more effective speaker feature selection. In
addition, compared to ResNet-DTCF, the results of frequency-
domain learned sparse filters are clearly superior.

4. Conclusion

In this paper, we propose a learnable sparse filterbank to di-
rectly model the magnitude spectrum. Two kinds of sparsity
constraints are introduced to optimize the filterbank initialized
on Mel-Scale: each filter is expected to activate a few frequency
components and reduce others to zero while maintaining differ-
entiation between filters. The SV experiments conducted on
different datasets show the proposed system outperforms state-
of-the-art systems by a significant margin.
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