
A Universally-Deployable ASR Frontend for Joint Acoustic Echo Cancellation,
Speech Enhancement, and Voice Separation

Tom O’Malley, Arun Narayanan, Quan Wang

Google LLC, U.S.A
{omalleyt, arunnt, quanw@google}.com

Abstract
Recent work has shown that it is possible to train a single model
to perform joint acoustic echo cancellation (AEC), speech en-
hancement, and voice separation, thereby serving as a unified
frontend for robust automatic speech recognition (ASR). The
joint model uses contextual information, such as a reference
of the playback audio, noise context, and speaker embedding.
In this work, we propose a number of novel improvements to
such a model. First, we improve the architecture of the Cross-
Attention Conformer that is used to ingest noise context into
the model. Second, we generalize the model to be able to han-
dle varying lengths of noise context. Third, we propose Signal
Dropout, a novel strategy that models missing contextual infor-
mation. In the absence of one or more signals, the proposed
model performs nearly as well as task-specific models trained
without these signals; and when such signals are present, our
system compares well against systems that require all context
signals. Over the baseline, the final model retains a relative
word error rate reduction of 25.0% on background speech when
speaker embedding is absent, and 61.2% on AEC when device
playback is absent.

Index Terms: Noise robust ASR, Speaker embedding, Neural
AEC, VoiceFilter

1. Introduction
Neural network based end-to-end models [1, 2, 3, 4], large-scale
training data [5, 6, 7], and improved data augmentation strate-
gies [8, 9, 10] have significantly improved the robustness of au-
tomatic speech recognition (ASR) systems. However, factors
such as device echo from smart speakers, harsher background
noise, and competing speech still significantly deteriorate per-
formance [11, 12]. While it is possible to train separate ASR
models that address each adverse condition, in practice, it is
hard to maintain multiple task-specific ASR models and dynam-
ically pick the model that perfectly suits a use case. Further-
more, with large scale multi-domain [7] and multi-lingual mod-
eling [13, 14] gaining more interest, it is increasingly infeasible
to optimize the ASR model to address varying use cases and
adverse noise conditions simultaneously. Therefore, it is often
convenient to use separate frontend feature-processing modules
that address these adverse conditions, and to train and maintain
them separately from the ASR models.

Adverse noise conditions can broadly be classified into 3
distinct categories: background noise, competing speech, and
device echo.

Background noise: Non-speech background noise is han-
dled via data augmentation strategies such as multi-style train-
ing (MTR) [15, 8]. This technique is relatively straight-forward
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to apply during ASR training, and as a result, large-scale ASR
models are generally robust to moderate levels of non-speech
noise. However, background noise can still degrade perfor-
mance in low signal-to-noise ratio (SNR) conditions [16].

Competing speech: Competing speech refers to the pres-
ence of one or more non-target speakers in the utterance. ASR
models are typically trained on a single speaker, since in multi-
speaker conditions it is generally unclear as to which speaker
the model should attend to, without additional contextual in-
formation. Models that separate out multiple speakers [17]
are generally sub-optimal since it is difficult to determine how
many speakers to support. As a consequence, competing speech
conditions are quite challenging for typical ASR models.

Device echo: With interactive devices such as smart
home speakers, ASR performance degrades severely when the
device is playing back audio, especially if that audio contains
discernible speech, which is typical for voice assistants. Acous-
tic echo cancellation (AEC) techniques [18, 19, 20] address this
issue. Signal processing [18, 19, 21, 22] and neural network
[20, 23, 24, 25] based solutions have both been proposed for
AEC. What makes the task distinct from the others is that the
reference signal of the device playback is usually available and
can be used for noise suppression.

The aforementioned noise conditions have been addressed
in the literature, typically, using task-specific models. A recent
work has shown that it is possible to address all 3 types of inter-
ference simultaneously with a single model [26]. Such a model
uses multiple contextual signals:

• A noise context signal, which is a noise-only segment prior
to the utterance, to help remove background noise.

• A speaker embedding vector for improving performance in
conditions with competing speech.

• The playback reference signal for removing device echo.

The model proposed in [26] makes the simplifying assumption
that the necessary context signals are always present during
training and inference. But in practice, not all contextual sig-
nals are available at all times. For example, speaker embedding
vectors are usually obtained via an optional speaker enrollment
process, and many device users choose to opt-out of this en-
rollment. Similarly, the reference signal for echo cancellation
may not be available on certain devices, or are badly aligned
and, therefore, unusable. In this work, we generalize this pre-
vious work to handle missing contextual information. Model-
ing missing information is a well studied area, especially in the
audio-visual literature [27, 28, 29]. These works typically deal
with occlusion and corrupted signals, which is more common
to visual signals. Unlike these earlier works, we specifically
address completely missing contextual information and strictly
for an acoustic frontend.

A related problem is the availability and the length of the
noise context before the utterance. This depends on the ex-
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istence and size of the audio buffer on the device, which can
also vary widely. Apart from modeling missing information, we
therefore also propose modifications to noise context modeling
to allow for varying lengths of noise context.

Finally, we propose improvements to the architecture of the
Cross-Attention Conformer [30] that was used in [26] for noise
context modeling.

The rest of this paper is laid out as follows: Sec. 2 provides
a detailed description of the proposed system. Sec. 3 describes
our general experimental settings. Experiments and results are
presented in Sec. 4 and conclusions in Sec. 5.

2. System
We start by giving a brief overview of the system in [26], which
is what we build on, and then focus on the improvements that
allow this system to generalize better.

2.1. Overview

Fig. 1 shows a block diagram of the overall system. The model
is composed of a primary encoder, a noise context encoder, and
a cross-attention encoder that combines the outputs of the two
encoders. Each of these encoders consists of modified con-
former blocks [31] that use a speaker embedding vector to mod-
ulate their input. Conformers have been shown to be well-suited
for speech and audio tasks in prior work [31, 32]. Modulation
via a speaker embedding vector allows the model to focus on
the speaker of interest during enhancement.

Figure 1: System overview. The system receives noisy features,
and 3 optional signals: the device playback, noise context, and
speaker embedding. Signal Dropout is performed only during
training.

Primary Encoder: The primary encoder consists of N mod-
ified conformer blocks. The inputs to the primary encoder are
log Mel-filterbank energy (LFBE) features from the noisy sig-
nal and the AEC reference signal, stacked together in the frame
dimension. The encoder also receives a speaker embedding of
the target speaker as a side input. At the start of each conformer
block, the speaker embedding is combined with the block’s in-
puts using feature-wise linear modulation (FiLM) [33]. The
modulated inputs are then passed to a standard conformer en-
coder.
Noise Context Encoder: The noise context encoder is com-
posed of N standard conformer blocks, and is executed in par-
allel with the primary encoder. The encoder uses LFBE features
from the noise context as input.
Cross-Attention Encoder: The outputs of the primary en-
coder and the noise-context encoder are fed to the cross-
attention encoder [30] as the input feature and the auxiliary
feature, respectively. The cross-attention encoder is composed
of M modified cross-attention conformer blocks. Before each
block, we repeat the process of combining the speaker embed-

ding with the input features using FiLM, similar to the pri-
mary encoder. The cross-attention encoder summarizes en-
coded noise-context features with a cross-attention layer that
uses the modulated input features as queries. The summa-
rized noise context is subsequently merged with the inputs us-
ing FiLM and a second cross-attention layer. In prior work, we
show that the cross attention conformer is able to summarize
highly non-stationary noise types, summarizing it separately for
each input frame to be enhanced, thereby overcoming the lim-
itations of using a single noise embedding to represent noise
context [30].

2.2. Proposed improvements

2.2.1. Improvements to Cross-Attention Conformer

We modify the cross attention blocks to better summarize and
merge the noise context with input features. After processing
encoded input features and noise context features through feed-
forward and convolutional layers, we summarize the processed
noise context features using cross-attention. Similar to [26], for
cross-attention, the processed input features are used as queries,
and the noise context features are used for deriving keys and
values. But unlike [26], we skip the residual connection after
cross-attention, relying on the subsequent FiLM layer to com-
bine the noise-context summary with the input features. Fol-
lowing FiLM, we use a self-attention layer instead of the cross-
attention layer used in [26].

Mathematically, if x, m, and n are the encoded input, d-
vector and the encoded noise context from the previous layer,
the modified cross-attention encoder does the following:

x̂ = x+ r(m)� x+ h(m),

x̃ = x̂+
1

2
FFN(x̂), ñ = n+

1

2
FFN(n),

x′ = x̃+ Conv(x̃), n′ = ñ+ Conv(ñ),

x′′ = MHCA(x′, n′),

x′′′ = x′ + x′ � r(x′′) + h(x′′),

x′′′′ = x′′′ + MHSA(x′′′),

y = LayerNorm(x′′′′ +
1

2
FFN(x′′′′)).

(1)

Here, MHCA and MHSA stand for multi-headed cross at-
tention and multi-headed self-attention, respectively. The mod-
ifications, compared to [26], are marked in blue. With these
modifications, x′′ now strictly corresponds to a noise summary,
x′′′ merges input features and noise summary, and x′′′′ adds
self-attention processing block on the combined features. y is
the final output of the processing block, which is passed on to
the next layer, along with the d-vector, m, and the encoded noise
context, n.

2.2.2. Generalized Noise-context Modeling

In the previous work, it was assumed that 6 seconds of back-
ground noise context was always available to the frontend
model. In this work, we relax that assumption by training our
model on randomly trimmed noise contexts, with the context
length uniformly sampled from 0 to 6 seconds. The random
length of the resulting noise context poses a challenge to the ab-
solute positional embedding, which is commonly used in trans-
former / conformer blocks when modeling sequences. As the
distance of each noise context frame from the start of the tar-
get utterance is now also dependent on the length of the noise
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context, adding the positional embedding [34, 31] during the
pre-processing stage of the noise context can provide mislead-
ing information to both the noise context encoder and the cross
attention encoder. For example, the last noise context frame
will have different absolute positional embedding depending on
the length of the noise context. Intuitively, it is the actual spec-
tral information carried in the noise context (especially for non-
stationary noise types) that helps improve enhancement. Fur-
thermore, it is the distance of a noise context frame from the
start of the target utterance that is more important than their ab-
solute position within the noise context.

Based on these intuitions, we consider two alternatives to
absolute positional embedding. First, we drop the positional
embedding in the noise context encoder, but use a reversed
absolute positional embedding in the cross-attention encoder.
That is, instead of using a positional embedding, p(t), for the
noise context frame, n(t), the reversed positional embedding
uses p(TN − t) as the embedding, where TN is the number of
frames in the noise context. Therefore, the positional embed-
ding encodes how long before the target utterance a frame of
noise context occurred, fixing the misalignment problem oth-
erwise introduced by the random trim. The second approach
drops positional embedding altogether in both the noise context
encoder and the cross-attention encoder.

2.2.3. Modeling Missing Context Signals

To allow the system to generalize to environments in which one
or more context signals are missing, we propose using signal
dropout during training, wherein context signals are dropped
out with a given probability. The idea is similar to dropout reg-
ularization [35], but applied at an input level. Our goal with
signal dropout is to encourage the model to not just rely on the
most relevant context signal, but to also utilize alternative con-
text signals that may provide useful information for enhancing
the input. For example, for AEC, even when the reference sig-
nal is missing, the speaker embedding vector will provide some
information to separate the target signal from the noisy input.

Since the model architecture is typically static, the dropped-
out context signal still needs to be presented in some fashion to
the model. Therefore, when a context signal is dropped, we re-
place the features that would have been generated for that signal
with all-zeros. For the reference signal for AEC, we thus cre-
ate an all-zero feature of the same length and feature dimension
as the utterance. The feature dimension is the same as that of
the LFBE features used for the reference signal, if it were not
missing. For the noise context signal, we create an all-zero fea-
ture with a length of 6 seconds, and the same dimension as the
LFBE features. The speaker embedding is replaced by a 256-
dimensional all-zero vector, which matches the length of the
speaker embedding vector. All features are then fed, as before,
to the joint ASR frontend.

We also experimented with replacing the missing signals
with a frame-level learned representation, rather than all-zeroes.
However, we found that this did not improve performance over
using all-zeros.

3. Experimental settings
3.1. Datasets

Similar to [26], we train on datasets derived from Lib-
riSpeech [36] as well as internal vendor-collected utterances.
LibriSpeech consists of 281k utterances. The vendor-collected
sets consist of 1, 916k utterances. We treat these data sources

Table 1: Ablation study of the proposed Cross-Attention Con-
former changes. WER are reported.

Model Noise
Proposed Model 13.6
- Residual changes 13.7

- Self-Attention changes [30] 14.2

Table 2: Results using generalized noise context modeling. Re-
versed refers to reversed positional embedding for noise and
None refers to no positional embedding. WER are reported.

Positional Embeddings Speech Noise
-5 dB 5 dB -5 dB 5 dB

Reversed 41.0 21.0 31.8 12.9
None 39.4 20.4 30.2 12.3

as ‘clean’ and add device echo, background noise, or compet-
ing speech to each utterance. The test sets are created using the
test-clean subset of Librispeech.
Background noise: The speech enhancement training set is
created using a room simulator [8]. This first adds reverbera-
tion with T60s between 0 msec and 900 msec, then noise with
an SNR in the range [-10 dB, 30 dB]. The noise snippets repre-
sent typical noise conditions such as kitchen, cars, etc. as well
as publicly available noises from Getty1 and YouTube Audio Li-
brary2. Test sets are also created in a similar fashion, but using
mixing conditions that are disjoint from training.
Competing Speech: In order to simulate multi-speaker con-
ditions, we mix the training utterances with competing speech
from the training datasets, chosen randomly. Test sets are also
constructed in a similar fashion.
Device Echo: We use two types of device echoes [37]. The
first type consists of entirely synthetic echoes, created using a
reference signal played through a reverberant room simulator,
with the speaker configured to be close to the microphone. Ref-
erence signals are drawn from Librispeech. The second type of
training data contains re-recorded echoes using an internal TTS
dataset. These utterances are re-recorded after being played
back in a room on Google Home devices at varying signal lev-
els. The goal is to capture microphone non-linearities, which
are harder to model using a room simulator. The echoes are
added to reverberant target speech signal at SNRs in the range
[−20 dB, 5 dB]. The AEC evaluation sets are created using
only these re-recorded echoes, since that subset is both more
challenging and closer to real-world conditions.

3.2. Training details

All models are trained in TensorFlow [38], using the Lingvo
[39] toolkit. All joint frontend models contain approximately
15M parameters. We use 2 conformer layers for each of the
primary encoder, noise context encoder, and cross-attention en-
coder. Each conformer layer has 256 units, with the kernel size
for convolution set to 15. 128-dimensional LFBE features are
used for all signals, computed for 32 msec windows with 10
msec hop. The dvector is 256-dimensional. All attention layers
use causal self-attention with a window of 65 frames in the past.

The frontend model estimates an ideal ratio mask [40],
which is used to enhance the noisy LFBE features. The en-
hanced features are then passed to a pretrained recurrent neural

1https://www.gettyimages.com/about-music
2https://youtube.com/audiolibrary
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Table 3: Missing Context Signal Results. Word error rates are reported for -5 db SNR background speech, -5 dB SNR background noise,
and -10 db SNR AEC.

Model All context No dvector No noise context No playback
Speech Noise AEC Speech Noise AEC

Baseline 69.2 36.5 80.5 69.2 36.5 80.5
0% Signal Dropout 44.6 31.9 23.9 61.7 34.9 65.5

20% Signal Dropout 45.1 32.0 24.2 51.9 33.6 31.2
50% Signal Dropout 45.0 32.2 26.1 50.9 34.3 30.6

Dedicated Model - - - 51.3 34.5 29.0

net transducer based ASR model [41]. As losses, the frontend
models use a combination of L1 and L2 distance between es-
timated and ideal masks, and an ASR loss that encourages the
activations of a pretrained ASR encoder generated using clean
and enhanced LFBE features to be close to each other.

4. Results
All experiments are evaluated by passing noisy data through the
enhancement frontend, and then passing the enhanced features
to a pre-trained ASR model. We report the ASR model’s word
error rate (WER).

4.1. Modified Cross-Attention Conformer

We perform a few ablations on the improvements to the Cross-
Attention Conformer. The results are shown in Table 1. We only
report results on the evaluation data with background noise,
since the Cross-Attention Conformer is primarily used to in-
tegrate noise context into the model. WERs are reported on an
evaluation set consisting of background noise added to the dev-
clean subset of Librispeech at a uniform range of SNRs from
-5 dB to 15 dB. As can be seen, our proposed system achieves
a reduction in relative WER of 4.2% compared to the original
Cross-Attention Conformer. Most of these gains are coming
from replacing the last cross-attention with self-attention; mov-
ing the residual connection from the first cross-attention to the
subsequent FiLM module improves WER by only ∼1%.

4.2. Generalized Noise-Context Modeling

Table 2 shows the WERs using the various strategies to encode
positional information for noise context. For these experiments,
we train a model with no signal dropout on the training data
with background noise and background speech. Although using
reversed positional embedding to encode the distance in time
from the beginning of the target utterance is helpful, we find that
removing the positional embedding entirely outperforms such a
method, across all conditions. This is likely because it encour-
ages the model to summarize noise context entirely based on
the spectral information, as opposed to the position of the frame
in the noise context.

4.3. Modeling Missing Context Signals

We train models with 2 different probabilities of dropping each
context signal: 20%, and 50%. The same probability is used
for each context signal. We also train dedicated models with-
out speaker embedding, a model without reference signal, and a
model without noise context, to use as strong comparison points
for evaluating performance when a signal is missing. Similarly,
we train a model with all contextual signals always present, to
use as a strong comparison point for evaluating performance
when all signals are present. The “Baseline” corresponds to
using the noisy features directly for ASR without any enhance-

ment.
For evaluations, we separate each noise type into its own

evaluation set, and compare the performance of the model on
each set at different SNRs. All results shown are for -5 dB
SNR background speech, -5 dB SNR background noise, and
-10 dB SNR acoustic echo settings. Additionally, to measure
performance when a signal is absent, we create evaluation sets
without speaker embedding, without noise context, and without
the reference signal.

Table 3 shows the WER of the missing context signal ex-
periments. These results show that, when all context signals
are present, the 20% and 50% signal dropout method performs
nearly as well as a model trained without any signal dropout
(0% signal dropout). Additionally, when a context signal is
missing, the models trained with signal dropout significantly
outperform such a model and achieve comparable performance
to a dedicated model trained entirely without that context signal.

Training with a 20% signal dropout rate appears sufficient
to achieve the majority of these benefits. When all signals are
present, the 20% signal dropout model achieves a relative WER
within 1.1% on the background speech dataset, 0.3% on the
background noise dataset, and 1.2% on the AEC dataset com-
pared to the 0% signal dropout model. Compared to dedicated
models, the 20% signal dropout model performs within 1.2%
relative WER on the background speech dataset when speaker
embedding is missing, slightly better on the background noise
dataset when noise context is missing, and within 7.6% relative
WER on the AEC dataset when device playback is missing.

Compared to baseline, when all signals are present the 20%
signal dropout model reduces relative WER in low SNR envi-
ronments by 35.5%, 12.3%, and 70.0%, on background speech,
background noise, and AEC datasets, respectively. The model
retains a relative reduction over baseline of 25.0% on back-
ground speech when speaker embedding is absent, 7.9% on
background noise when noise context is absent, and 61.2% on
AEC when device playback is absent. We note that the model
performs surprisingly well on AEC even when the device play-
back is missing, presumably because it is able to make use of
the speaker embedding; this shows that the models trained with
signal dropout learns to make use of the available information
even when the most relevant context signal is missing.

5. Conclusion
In this work, we presented an improved ASR frontend for joint
AEC, speech enhancement, and voice separation. Our system
can handle the presence or absence of multiple context signals,
allowing it to be deployed in a wide variety of environments.
In addition, we adapted the system to better incorporate noise
context of varying lengths. Finally, we showed general-purpose
architectural improvements to the originally proposed Cross-
Attention Conformer. In future work, we plan to explore ex-
tending our approach to multi-channel inputs.
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