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Abstract
The recent text-to-speech (TTS) has achieved quality compa-
rable to that of humans; however, its application in spoken di-
alogue has not been widely studied. This study aims to real-
ize a TTS that closely resembles human dialogue. First, we
record and transcribe actual spontaneous dialogues. Then, the
proposed dialogue TTS is trained in two stages: first stage,
variational autoencoder (VAE)-VITS or Gaussian mixture vari-
ational autoencoder (GMVAE)-VITS is trained, which intro-
duces an utterance-level latent variable into variational infer-
ence with adversarial learning for end-to-end text-to-speech
(VITS), a recently proposed end-to-end TTS model. A style
encoder that extracts a latent speaking style representation from
speech is trained jointly with TTS. In the second stage, a style
predictor is trained to predict the speaking style to be synthe-
sized from dialogue history. During inference, by passing the
speaking style representation predicted by the style predictor to
VAE/GMVAE-VITS, speech can be synthesized in a style ap-
propriate to the context of the dialogue. Subjective evaluation
results demonstrate that the proposed method outperforms the
original VITS in terms of dialogue-level naturalness.
Index Terms: end-to-end TTS, spontaneous dialogue, speaking
style, variational autoencoder, BERT

1. Introduction
Dialogue is a conversation between two or more people. In
recent years, the development of natural language processing
has greatly improved the quality of text-based dialogue gener-
ation resulting in human-computer or computer-computer dia-
logue [1, 2]. On the other hand, speech is essential for human
dialogue. Therefore, TTS has an important role in facilitating
communication between humans and computers.

The development of deep learning has resulted in synthe-
sizing speech in a quality comparable to that of humans [3, 4].
However, dialogue speech often has characteristics that are dif-
ferent from those of the recited speech. First, while recited
speech has transcript beforehand, dialogue speech is a spon-
taneous speech. Therefore, dialogue speech is more difficult to
model than recited speech because of repetition, fillers, prolon-
gation, and breaths. Second, dialogues are frequently accom-
panied by backchannels, also known as aizuchi [5] in Japanese,
and laughter. These factors transcribed in the same way can be
uttered in various styles. Thus, it is necessary to appropriately
model the one-to-many relationship between text and speech.
Finally, several factors of speech such as pitch [6], energy [7],
and speech rate [8] can be in sync with the dialogue partner,
which is called entrainment [7]. Considering these features,
TTS can resemble more natural human-human dialogue.

Several studies have focused on conversational TTS.
Yokoyama et al. used Utsunomiya University spoken dialogue
database [9] to control paralinguistic information [10]. They
utilized paralinguistic information tags and did not consider di-

alogue history. Guo et al. used the bidirectional encoder repre-
sentations from Transformers (BERT) [11] to compute encod-
ings of current text and chat history and fed them to the encoder
of the acoustic model to improve the naturalness of the synthetic
speech [12]. Cong et al. considered the acoustic information
of the previous utterance as well as the linguistic information
by predicting the Global Style Token [13] of the current utter-
ance from the mel-spectrogram of the previous utterance [14].
These two studies used predefined transcript to record spoken
dialogue, which may differ from actual dialogue without tran-
script, in terms of the frequency of the spontaneous behaviors
and the presence or absence of backchannels.

In this study, we record a free-form dialogue on a given
topic without preparing a transcript to achieve more human-like
dialogue speech synthesis. Of the three aforementioned fea-
tures of spontaneous dialogue, (1) we use VITS [4], an end-to-
end TTS which robustly estimates alignment between text and
speech by monotonic alignment search (MAS) and blank to-
kens. (2) We incorporate an utterance-level latent variable into
VITS to facilitate the modeling of one-to-many relationship be-
tween text and speech. Following the framework of VAE [15],
we propose two methods: VAE-VITS that assumes a standard
normal distribution for the prior distribution of the latent vari-
able, and GMVAE-VITS, which assumes a Gaussian Mixture
Model (GMM) for the prior. Furthermore, by sharing the latent
space among speakers, training is encouraged to make similar
speaking styles between speakers close in the latent space. (3)
We introduce a style predictor that predicts the speaking style
of current speech based on dialogue history to realize an en-
trainment that is close to actual dialogue. Speech sequences
in dialogue history are difficult to handle directly because their
length is extremely long. Therefore, we adopt a two-stage train-
ing framework: first, VAE/GMVAE-VITS is trained using a sin-
gle utterance and then style predictor is trained using a sequence
of style representations extracted from past utterances.

2. Spontaneous dialogue corpus
To record speech that is close to actual human-human conver-
sation, the following method is used for speech recording and
post-processing. First, two or more speakers are given a topic
and asked to talk freely and their voices are recorded on inde-
pendent channels. Automatic speech recognition (ASR) auto-
matically transcribes the recorded speech. Transcripts are then
manually modified and given time information (start and end
time of each utterance) to produce the final transcript with time
information. Using this time information, the audio file is split
to obtain utterance-level speech. Although it is time-consuming
to transcribe and assign time information to free dialogue, the
use of ASR can greatly reduce the burden of post-processing.
In addition, the lack of predefined transcript allows the speak-
ers to produce more spontaneous speech which contains repeti-
tion, fillers, prolongation, and also backchannels. Speech data
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Figure 1: Training procedure of VITS incorporating utterance-
level latent variable.

recorded in the aforementioned method enables to model the
characteristics of actual dialogues more accurately.

3. Two-stage training-based dialogue TTS
Let x1, . . . ,xN and s1, . . . , sN be the sequence of dia-
logue speech and speaker ID of each utterance, respec-
tively. The purpose of this study is to synthesize the speech
xn corresponding to the nth text tn and speaker ID sn
by considering the past dialogue speech x1, . . . ,xn−1 and
speaker ID s1, . . . , sn−1, that is, to model the distribution
p(xn|tn, sn,x1, . . . ,xn−1, s1, . . . , sn−1). In spoken dia-
logue, each of x1, · · · ,xn−1 is an extremely long time series,
and it is difficult to model them directly when n is large. There-
fore, we propose a two-step training framework which is de-
scribed in section 3.1 and section 3.2.

3.1. Speaking style modeling using VAE/GMVAE-VITS
The first training stage models the utterance-level relationship
between text and speech, that is, pθ(xn|tn, sn). In this study,
we model this relationship using VITS [4]. VITS is an end-
to-end TTS model that learns the relationship between the
phoneme sequence c and speech waveform x via frame-level la-
tent variable zf . VITS estimates monotonic alignment between
c and zf during training using MAS algorithm [16]. Thus, it
can be trained more stably than fully attention-based models
such as Tacotron 2 [3].

The proposed method introduces an utterance-level latent
variable zu to represent the speaking style of each utterance.
We also introduce an utterance encoder that predicts the mean
µu and variance σ2

u of zu using zf and speaker embedding s.
That is, the posterior distribution of zu is given as follows:

q(zu|zf , s) = N (zu;µu, diag(σ
2
u)). (1)

Hereafter, the utterance encoder and the posterior encoder,
which predicts zf from the linear spectrogram X of speech
x, will be called a style encoder together. We condition the
stochastic duration predictor, flow, and decoder on zu to pre-
dict duration, acoustic feature, and waveform considering given
speaking style, respectively. Concretely, we apply a linear pro-
jection to zu and add it to the speaker embedding s, which is fed
to each module. A conceptual diagram of the proposed method
is depicted in Fig. 1.

The proposed method can be trained by maximizing the ev-

idence lower bound (ELBO) of the following log-likelihood (for
simplicity, we omit s in the equation below):
log p(x|c) ≥ Eq(zf |x)q(zu|zf ) [log p(x|zf , zu)]

− Eq(zu|zf ) [DKL(q(zf |x)||p(zf |c, zu)]

−DKL(q(zu|zf )||p(zu)) (2)

≈ 1
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where M ′,M ′′ denote the numbers of Monte Carlo sampling
for zf , zu, respectively. The first and second terms of eq. (3)
can be calculated in the same way as in the original VITS. As-
suming p(zu) = N (zu;0, I), the third term is the KL diver-
gence between two multivariate normal distributions, which can
be calculated analytically. We call the proposed method defined
by the above model and objective function as VAE-VITS.

This study further examines the use of a Gaussian mix-
ture model (GMM) with equal mixture weights p(zu|yu) =
N (zu;µyu , diag(σ

2
yu

)) for the prior distribution, following
GMVAE-Tacotron [17], where yu denotes the discrete latent
class corresponding to zu, and the number of latent classes is
defined as K. In this case, the ELBO of the log-likelihood is
approximated as follows, instead of eq. (3):

log p(x|c) ≥ 1

M ′M ′′
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DKL(q(zf |x)||p(zf |c, z(m′′)
u ))

− 1
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{
DKL(q(yu|z(m′)

f )||p(yu))

+
K∑

yu=1

q(yu|z(m)
f )DKL(q(zu|z(m)

f )||p(zu|yu))

}
. (4)

Some utterances such as backchannels are short and uttered in
diverse styles, while others are longer and uttered in a relatively
consistent style in dialogue speech. By assuming GMM for the
prior distribution, the various styles of dialogue speech are ex-
pected to be represented more accurately. We call this method
GMVAE-VITS.

3.2. Style transition modeling using style predictor
In the second stage of training, a style predictor which pre-
dicts the distribution of zn using sequences of speaking style
z1, . . . , zn−1 and speaker ID s1, . . . , sn is trained, with the
style encoder trained in the first stage fixed. An outline of
the proposed style predictor is shown in Fig. 2 (a). A sim-
ple unidirectional LSTM is employed to model the transition
of speaking styles during a dialogue. When we directly use
zu described in section 3.1 as a speaking style representation,
the variation caused by sampling from the posterior distribu-
tion hinders the training of style predictor. Therefore, we define
vu = [µ⊤

u ,σ
⊤
u ]⊤ as a style vector and used it as an input/output

of the style predictor. Hereafter, we replace the subscript u with
the index n in the dialogue for simplicity.
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Figure 2: Conceptual diagram of (a) style predictor, (b) sen-
tence encoding, and (c) context encoding.

Style predictor takes two sequences as inputs, the style
vector sequence v1, . . . ,vn−1 and speaker ID sequence
s1, . . . , sn, and predicts the style vector vn of the current ut-
terance. The model is trained to minimize the mean squared
error ∥ṽn − vn∥2 between the predicted and target style vec-
tor ṽn and vn, respectively. In addition, following Guo et
al. [12], two types of linguistic features extracted using pre-
trained BERT [11] are input supplementally: (1) sentence en-
coding csentn , an output vector corresponding to the [CLS] to-
ken, where the text tn = (tn,1, tn,2, . . . ) is prefixed with [CLS]
token and input to the BERT, and (2) context encoding ccontn , an
output vector corresponding to the [CLS] token, where a series
of k text sequences tn−k+1, . . . , tn are concatenated, prefixed
with a [CLS] token, and input to the BERT. The procedures of
computing these encodings are shown in Fig. 2 (b) and (c).

4. Experiments
4.1. Experimental conditions
4.1.1. Datasets

Japanese dialogues between two females, who can see each
other’s faces through glass and can hear each other’s voice with
a headphone, were recorded in isolated soundproof chambers
by the method described in section 2 and used for the experi-
ment. The speakers were colleagues working in radio, which
made their conversation more friendly. The recorded data con-
tained dialogues of 55 topics, which were transcribed and di-
vided into 18,385 utterances. Azure speech to text was used for
ASR. 45 dialogues (15,739 utterances), 5 dialogues (1,284 ut-
terances), and 5 dialogues (1,362 utterances) were used as train-
ing, development, and evaluation set, respectively. All the ex-
periments were conducted using 24 kHz/16 bit speech signals.
A 186-dimensional linguistic feature extracted using Japanese
text frontend, Open JTalk 1 , was used as an input of VITS (c in
Fig. 1), instead of phoneme sequences.

4.1.2. Model and training details

We trained three models: the original VITS [4], which does
not explicitly consider speaking styles, and the proposed VAE-
VITS and GMVAE-VITS described in section 3.1. The hyper-
parameters of VITS were set to be the same as in the previous
study. Following GMVAE-Tacotron [17], the utterance encoder
was composed of two 1D-convolutional layers with 512 filters
and a kernel size of three, two bidirectional LSTM layers with
256 cells at each direction, and a mean pooling layer followed
by a linear projection layer. The number of Monte Carlo sam-
pling was set to 1 and the dimension of zu was set to 16. For
GMVAE-VITS, the number of latent classes K was set to 10,
and the initial value and lower bound of σyu were set to e−1 and

1http://open-jtalk.sourceforge.net/

Table 1: RMSE between the style vector predicted using the
style predictor and one extracted from the target speech.

Method None S C S+C
VAE-VITS 0.329 0.256 0.291 0.250
GMVAE-VITS 0.713 0.484 0.610 0.470

Table 2: Objective evaluation results.

Method MCD MSD DUR

VITS 7.70 9.50 0.50
VAE-oracle 7.06 8.18 0.44
GMVAE-oracle 7.04 8.17 0.41
VAE-predicted 7.54 9.22 0.50
GMVAE-predicted 7.51 9.18 0.47

e−2, respectively. All the models were trained for 200k steps
using AdamW optimizer [18] with β1 = 0.8, β2 = 0.99 and
weight decay λ = 0.01. The batch size was set to 48 and the
learning rate was scheduled in the same manner as in the pre-
vious study [4]. KL annealing [19] was introduced for training
VAE/GMVAE-VITS: KL weights of terms newly introduced by
the proposed method were increased from 0 to 1 by cosine an-
nealing over the initial 50k steps.

Three unidirectional LSTM layers with 256 cells and
dropout [20] rate 0.5 were used as the style predictor. The tar-
get style vector was obtained using the style encoder of trained
VAE/GMVAE-VITS. We trained BERT [11] from scratch on
approximately 400 GB of Japanese text and used it to com-
pute 1024-dimensional sentence encoding csent and context en-
coding ccont. The text sequence length k for obtaining ccont

was set to 10. While the dialogues in the training set con-
sisted of 160–693 utterances, we (1) randomly selected a se-
quence length l from the range [10, 30], and (2) randomly ex-
tracted consecutive l utterances from each dialogue. Thereby,
we avoided overfitting caused by memorizing the entire series.
The model was trained up to 2,000 steps with batch size 32 us-
ing the same AdamW optimizer used in training VITS and the
checkpoint with the smallest validation loss was used.

4.2. Results
4.2.1. Objective evaluation of style predictor

To evaluate the effectiveness of providing additional linguis-
tic information to the style predictor, we trained the following
four models for each of VAE/GMVAE-VITS: (1) None: nei-
ther csent nor ccont was used, (2) S: only csent was used, (3)
C: only csent was used, and (4) S+C: both csent and ccont were
used. The root mean squared error (RMSE) between predicted
and target style vectors is presented in Table 1. The RMSE of S
was significantly smaller than None for both VAE and GMVAE,
which indicates the effectiveness of csent in style prediction. In
addition, by comparing None and C, or S and S+C, we can
see that ccont also contributed to improved prediction accuracy.
These results suggest that it is effective to use not only acoustic
but also linguistic history in predicting transition of speaking
styles during a dialogue. In the following experiments, we used
the style predictor trained in the S+C condition.

4.2.2. Objective evaluation of overall system

We conducted an objective evaluation to compare the per-
formance of the proposed methods with baseline VITS. For
the proposed methods, we evaluated two cases: one is to
use zu obtained from the target speech using the style en-
coder (VAE/GMVAE-oracle) and the other is to use zu sam-
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Figure 3: Analysis of latent space learned by GMVAE-VITS in terms of (a) prior distribution, (b) posterior distribution, (c) average
duration, (d) average pitch, and (e) average loudness.

Table 3: Results of MOS evaluation on utterance-level and
dialogue-level naturalness with 95% confidence intervals.

Method Utterance Dialogue

VITS 3.38±0.14 3.34±0.12
GMVAE-oracle 3.51±0.12 3.59±0.12
GMVAE-predicted 3.56±0.12 3.53±0.11

pled from the distribution defined by the predicted style vec-
tor ṽu (VAE/GMVAE-predicted). The performance was evalu-
ated in terms of following metrics: (1) mel-cepstral distortion
(MCD) [21], the RMSE of a 60-dimensional mel-cepstrum ex-
tracted from synthetic and target speech, (2) mel-spectral dis-
tortion (MSD), the RMSE of 80-dimensional mel-spectrogram
extracted from synthetic and target speech, and (3) total dura-
tion error (DUR), the error of speech length of synthetic and
target speech. Since the series length differs between synthetic
and target speech, dynamic time warping [22] was used to align
them before calculating MCD and MSD.

The results are presented in Table 2. Both VAE/GMVAE-
oracle showed significant improvement in MCD and MSD com-
pared to baseline VITS. DUR was also slightly improved, sug-
gesting that zu represents duration-related features as well as
acoustic features. VAE/GMVAE-predicted also showed im-
provement in MCD and MSD relative to baseline VITS. This
indicates that the style predictor was able to predict speaking
styles that are close to those of target speech. The performance
of GMVAE-VITS was slightly better than VAE-VITS for both
oracle and predicted. This is probably because the richer prior
of GMVAE-VITS could represent the various speaking styles of
dialogue speech more appropriately. In the next section, we fur-
ther compare the proposed GMVAE-VITS with baseline VITS.

4.2.3. Subjective evaluation of overall system

We conducted two mean opinion score (MOS) tests to evaluate
the subjective quality of the synthetic speech2. In the utterance-
level evaluation, raters were presented only one utterance and
asked to evaluate its naturalness. In the dialogue-level evalua-
tion, raters were presented a short dialogue consisting of 6 utter-
ances (approximately 10–20 sec) and asked to evaluate its nat-
uralness as a spoken dialogue (whether natural entrainment oc-
curred, whether the speaking style was suitable for the context,
etc.). We used ground truth timing of each utterance to con-
struct dialogue samples because our spontaneous dialogue cor-
pus contained numerous overlaps and simply playing the syn-
thesized speech alternatively resulted in unnatural dialogue. For
dialogue-level evaluation, we also computed text-speech align-
ment over recorded speech using MAS and used the alignment
information for synthesis to align speech length with the orig-

2Speech samples are available at : https://rinnakk.
github.io/research/publications/DialogueTTS.

inal one. The evaluation was conducted on a 5-point scale
from 1 (bad) to 5 (excellent). Thirty raters participated in the
evaluation, and each rater evaluated thirty speech samples.

The results are presented in Table 3. With regard to
utterance-level naturalness, although the scores of GMVAE-
oracle/predicted were slightly higher than VITS, there was no
significant difference between them. Though VITS does not
utilize explicit style representation, the synthetic speech was
evaluated as natural because various speaking styles exist that
sound natural when heard as a single utterance. Regarding
dialogue-level naturalness, the score of GMVAE-oracle was sig-
nificantly higher than VITS (p = 0.003 in Student’s t-test), con-
firming that using appropriate speech styles contributed to the
naturalness of dialogue. Furthermore, GMVAE-predicted also
achieved a significantly higher score than VITS (p = 0.021),
indicating that style predictor was able to predict the appropri-
ate speaking style when heard as a dialogue.

4.2.4. Analysis of latent space

Fig. 3 (a) and (b) illustrates the prior and posterior distribu-
tion of trained GMVAE-VITS, respectively, where dimension-
ality reduction was applied using principal component analysis.
We observed that the latent representations of the two speak-
ers were mixed, indicating that the learned latent space was
speaker-independent. This is because the speaker embedding s
was explicitly used, allowing the latent variable zu to represent
only speaker-independent speaking styles. We also synthesized
all texts in the evaluation set with different speaker IDs and la-
tent classes and described the average duration, pitch of voiced
segments, and loudness of synthetic speech in Fig. 3 (c), (d),
and (e). We confirmed that each latent class had different char-
acteristics and they were common across speakers. With these
characteristics, the learned prior distribution can be applied to
modify speaking style to the desired one.

5. Conclusions
In this study, we aimed to synthesize spoken dialogue that is
close to human spontaneous dialogue and proposed (1) record-
ing and transcription of free-form dialogues without transcripts,
(2) VAE/GMVAE-VITS to model various speaking styles, and
(3) a style predictor that predicts speaking styles using linguis-
tic and acoustic features from past dialogues. The combina-
tion of GMVAE-VITS and the style predictor achieved higher
naturalness than conventional VITS in a dialogue-level evalua-
tion. The latent space acquired by GMVAE-VITS was speaker-
independent and had different characteristics for each latent
class. This study assumed that transcriptions of past utterances
and timing of each utterance were available; however, actual
applications will require estimating these as well. Future work
will include introducing a mechanism to automatically estimate
them and unifying the proposed two-stage training framework
into a single end-to-end training framework.
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