The present study investigates the use of 1-dimensional (1-D) and 2-dimensional (2-D) spectral feature representations in voice pathology detection with several classical machine learning (ML) and recent deep learning (DL) classifiers. Four popularly used spectral feature representations (static mel-frequency cepstral coefficients (MFCCs), dynamic MFCCs, spectrogram and mel-spectrogram) are derived in both the 1-D and 2-D form from voice signals. Three widely used ML classifiers (support vector machine (SVM), random forest (RF) and Adaboost) and three DL classifiers (deep neural network (DNN), long short-term memory (LSTM) network, and convolutional neural network (CNN)) are used with the 1-D feature representations. In addition, CNN classifiers are built using the 2-D feature representations. The popularly used HUPA database is considered in the pathology detection experiments. Experimental results revealed that using the CNN classifier with the 2-D feature representations yielded better accuracy compared to using the ML and DL classifiers with the 1-D feature representations. The best performance was achieved using the 2-D CNN classifier based on dynamic MFCCs that showed a detection accuracy of 81%.