ISCA Archive Interspeech 2022
ISCA Archive Interspeech 2022

SingAug: Data Augmentation for Singing Voice Synthesis with Cycle-consistent Training Strategy

Shuai Guo, Jiatong Shi, Tao Qian, Shinji Watanabe, Qin Jin

Deep learning based singing voice synthesis (SVS) systems have been demonstrated to flexibly generate singing with better qualities, compared to conventional statistical parametric based methods. However, neural systems are generally data-hungry and have difficulty to reach reasonable singing quality with limited public available training data. In this work, we explore different data augmentation methods to boost the training of SVS systems, including several strategies customized to SVS based on pitch augmentation and mix-up augmentation. To further stabilize the training, we introduce the cycle-consistent training strategy. Extensive experiments on two public singing databases demonstrate that our proposed augmentation methods and the stabilizing training strategy can significantly improve the performance on both objective and subjective evaluations.