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Abstract
The “Switchboard benchmark” is a very well-known test set
in automatic speech recognition (ASR) research, establishing
record-setting performance for systems that claim human-level
transcription accuracy. This work highlights lesser-known prac-
tical considerations of this evaluation, demonstrating major im-
provements in word error rate (WER) by correcting the ref-
erence transcriptions and deviating from the official scoring
methodology. In this more detailed and reproducible scheme,
even commercial ASR systems can score below 5% WER and
the established record for a research system is lowered to 2.3%.
An alternative metric of transcript precision is proposed, which
does not penalize deletions and appears to be more discriminat-
ing for human vs. machine performance. While commercial
ASR systems are still below this threshold, a research system
is shown to clearly surpass the accuracy of commercial human
speech recognition. This work also explores using standard-
ized scoring tools to compute oracle WER by selecting the best
among a list of alternatives. A phrase alternatives representation
is compared to utterance-level N-best lists and word-level data
structures; using dense lattices and adding out-of-vocabulary
words, this achieves an oracle WER of 0.18%.
Index Terms: ASR evaluation, Switchboard benchmark, oracle
word error rate, N-best lists, phrase alternatives.

1. Introduction
This work is about the very well-known “Switchboard” subset
of an evaluation of US English conversational telephone speech
recognition, originally conducted by NIST in 2000. [1]

The current best published result is 4.3% WER [2], which
also acknowledged that “most of the speakers appear in the
training data, hyperparameters are optimized on [the test set],
and the human error rate might also have been overestimated”.

Other recent results demonstrate 5.0% with low-latency
streaming [3], and many works reference [4] and [5] as the first
systems to achieve the milestone of parity with human perfor-
mance, which is described as 5.1% to 5.9% WER.

A careful analysis in [6] notes that “humans are more likely
to miss words than to misrecognize them”, and is notable in
several regards: code was provided to specify a non-standard
data cleaning and text normalization process, while output from
a research system was re-scored in an (unsuccessful) attempt to
replicate a published result. Our work continues in this effort to
fully describe and improve upon the standard scoring method-
ology, sharing data and software to enable reproducible results.

This work benchmarks commercial ASR systems, inspired
by [7], which archived outputs from the dates of collection. For
this Switchboard benchmark, a particular advantage of bench-
marking commercial systems is that the evaluation simulates a
more realistic scenario of presenting each conversation side as
an entire 5-minute audio file. By contrast, the NIST evaluation
allowed research systems to use the reference segmentation as
input, which can result in artificially low WER scores.

This work is similar to [8] by presenting transcript precision
and recall as possibly more insightful alternatives to WER, par-
ticularly for highlighting characteristics of human performance.
The use of an “oracle” word error rate that is optimistically cal-
culated from ASR alternatives is similar to [9] which reranks
N-best alternatives for spoken content retrieval, as well as our
prior work [10] in evaluating systems for spoken term detection.

While evaluating traditional N-best lists, we also introduce
a novel representation for phrase-level alternatives. This cap-
tures the full expressiveness of an ASR lattice [11], but in a
more compact and linear data structure that can be conveniently
manipulated as input to ASR scoring software, or indexed by a
text-based search engine infrastructure. The aim of this work
is to show how this representation enables nearly perfect oracle
accuracy (0.18% WER) on a well-established ASR task. This
theoretical result motivates the further use of phrase alternatives
toward a highly practical goal of enabling spoken term detection
(i.e. audio search) applications that exhibit perfect recall.

2. Scoring the Switchboard Benchmark
2.1. Corrected reference files

Reference files from the original NIST evaluation are now dis-
tributed by the Linguistic Data Consortium (LDC)1, but differ
from what was later used in DARPA-funded evaluations known
as “RT-03” and “RT-04F”. For example, the newer GLM files
include backchannel mappings that generally improve scores.

Human transcribers disagree on this very difficult task
[4, 5, 6, 12, 13], so it should not be surprising that there are
inevitably some errors in these reference transcripts and map-
pings. For this work, a professional linguist was commissioned
to very carefully audit and correct these references. In addition
to the original transcripts, they could refer to four independent
results from human speech recognition (HSR) services, but not
any of the ASR systems. This paper’s authors further corrected
the GLM file with ad-hoc normalization of number formatting.

However, the vast majority of changes were related to an ar-
tifact of the make_reference script that is distributed with
the test set; it was used to create the reference STM by convert-
ing transcripts from an original TXT file format. Unfortunately,
every contraction in the original transcript is always expanded
into multiple words (see lines 126-131 in make_reference).
This does not seem to be sensible, especially considering that
the GLM filtering would also redundantly expand all contrac-
tions. We thus decided to reverse this automatic expansion of
contractions, and directed the highly skilled linguist to tran-
scribe each instance correctly as either its contracted or ex-
panded form by carefully listening to each acoustic realization,
favoring the contracted form in cases of true ambiguity.

These corrected reference files are shared publicly,2 and
should lead to substantial improvements across all systems.

1https://catalog.ldc.upenn.edu/LDC2002T43
2https://mod9.io/switchboard-benchmark.{glm,stm}
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Table 1: Switchboard WER scored with corrected references, optional deletions & exclusions, using differing segmentations.
Italicized results in all tables used the reference segmentation, which can be considered a bound on expected real-world performance.

ASR1 ASR2 ASR3 ASR4 ASR5 ASR6

LDC STM & GLM 10.18 12.37 11.10 8.25 8.62 4.63
+ RT-03 GLM 9.94 12.20 10.88 8.07 7.96 4.40
+ RT-04F GLM 9.92 12.20 10.86 8.05 7.95 4.39

STM with corrections 8.15 10.42 8.65 5.65 6.08 2.72
+ GLM with alternations 8.07 10.29 8.41 5.51 5.79 2.63

+ Exclude hesitations 7.86 9.99 8.41 5.28 5.30 2.45
+ Optional backchannels 7.77 9.77 7.55 5.17 4.54 2.43
+ Exclude backchannels 6.48 9.72 7.55 5.08 4.54 2.37

+ Single-segment STM 6.43 9.67 6.42 5.01 4.50 2.30
+ Reference segmentation 5.94 9.66 5.09 4.29 4.03 2.30

2.2. Expansions vs. alternations

The NIST SCTK software3 can use a GLM mapping file to fil-
ter reference STM and hypothesis CTM files by applying a set
of transformation rules. For example, contracted or compound
words can be expanded with a rule such as I’M => I AM.

However, by always expanding contractions in both the
reference STM and hypothesis CTM, this rule often double-
counts correct matches as well as errors. A better approach
is to denote alternations to be applied in the GLM file, e.g.
I’M => { I’M / I AM }, which will be scored as one or
two matches or errors as appropriate. The original form should
be listed first in the alternation, since SCTK will favor it when
multiple alignments have the same number of errors; otherwise,
favoring the expanded form results in overly optimistic scoring.

2.3. Optional deletions and excluded words

Another effect of the filtering is to treat some words as optional
deletions, marked by parentheses in the STM file, in particular
(%HESITATION). An ASR system should exclude such diffi-
cult words from CTM hypotheses, due to the asymmetric risk:
an error can have a larger effect on the numerator of WER, com-
pared to a correct match incrementing the denominator (Eq. 1).

One major commercial system (ASR3) never hypothesizes
hesitations – nor any backchannels such as “uh-huh”, which are
not optional deletions under the NIST scoring rules. So that
their system is not disadvantaged by a design choice, we can
consider backchannels to be optional deletions as well. So that
other ASR systems are not then disadvantaged by hypothesizing
backchannels, we also exclude those from their CTM files.

2.4. Segmentation

The NIST tools can misalign hypotheses with word-level times-
tamps that differ slightly from the reference utterance-level seg-
mentation of an STM file. A solution is to convert the multi-
segment STM into one long segment. This can improve WER
for ASR systems with consistent timestamp drift, and is needed
to score any HSR (human speech recognition) result.

This problem is not observed in academic research exper-
iments, because the reference segmentation is assumed to be a
valid input to the ASR system. This practice may be unrealistic
in real-world settings, however, as seen in the bottom rows of
Table 1: it can have a rather significant effect on WER results.

3https://github.com/usnistgov/SCTK

2.5. Measuring accuracy with precision and recall

WER = 100%× #Inserted + #Deleted + #Substituted
#Correct + #Deleted + #Substituted

(1)

Precision =
#Correct

#Correct + #Inserted + #Substituted
(2)

Recall =
#Correct

#Correct + #Deleted + #Substituted
(3)

Whereas the WER metric can be computed as in Eq. 1, a pair of
non-standard metrics can also be useful to consider when eval-
uating ASR accuracy. Transcript precision is the proportion of
hypothesized words that are correct. It does not penalize dele-
tions and scores consistently well for human transcripts, since it
forgives the common tendency to omit words or phrases that do
not convey much meaning (e.g. stuttering “i i i i ...”). The recall
metric can be rather variable for HSR results; it could be useful
for evaluating against non-verbatim reference transcriptions.

Table 2: Automatic (ASR) vs. human (HSR) speech recognition.
Human speech recognition marked ∗ was not speaker-labeled;
it was scored against a force-aligned speaker-merged STM file.

WER Precision Recall Cost/min.

ASR1 6.43 .950 .945 —
ASR2 9.67 .930 .916 4.0¢
ASR3 6.42 .953 .943 7.2¢
ASR4 5.01 .961 .962 4.8¢
ASR5 4.50 .964 .960 3.3¢

ASR1 5.94 .953 .947 —
ASR2 9.66 .929 .913 2.5¢
ASR3 5.09 .965 .953 16.5¢
ASR4 4.29 .969 .963 11.0¢
ASR5 4.01 .968 .964 3.0¢
ASR6 2.30 .981 .981 —

HSR1 4.84 .973 .957 $1.25
HSR2 4.33 .975 .962 $2.75

HSR3∗ 12.95 .973 .877 $0.79
HSR4∗ 11.72 .972 .891 $2.00
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Table 3: Oracle WER for utterance-level (N -best) alternatives.

WER N Nmax N.9 N.5 MB

ASR1 4.61 2 2 2 2 0.2
ASR1 2.70 10 10 10 10 0.5
ASR1 1.58 100 100 100 100 1.9
ASR1 1.09 1000 1000 1000 1000 15.2

ASR2 7.39 2 2 2 2 0.2
ASR2 5.41 10 10 10 10 0.5
ASR2 4.35 100 100 100 29 1.5
ASR2 4.05 1000 1000 1000 29 7.6

ASR3 3.95 2 2 2 2 0.2
ASR3 2.38 10 10 10 7 0.4
ASR3 2.06 ∞ 20 20 7 0.5

ASR4 3.12 2 2 2 2 0.2
ASR4 2.01 ∞ 10 10 10 0.5

ASR5 2.98 2 2 2 2 0.2
ASR5 2.29 ∞ 5 5 5 0.4

3. Representations of ASR Alternatives
Lattices can be generated by some ASR decoders, particularly
in a WFST system such as Kaldi [11], to represent the inherent
ambiguity and uncertainty of hypotheses. However, the lattices
are large and difficult to use in applications that require proper-
ties such as time-synchronous word sub-sequences.

Let Lu be the formal language representing the set of all
word sequences encoded in the lattice for a given utterance u.

3.1. Utterance-level alternatives (i.e. N-best lists)

Utterance-level alternatives, better known as N-best lists, can be
used to enumerate a formal language Lu(N), a set comprising
up to N most likely word sequences in the lattice. The lattice’s
language is a superset, with equality in the theoretical limit:

Lu ⊇ lim
N→∞

Lu(N) (4)

3.2. Word-level alternatives

Word-level alternatives, sometimes known as sausages, can be
derived by aligning paths in a lattice [14] or from statistics
used in Minimum Bayes’ Risk decoding [15]. These represent
a smaller formal language of up to N single-word sequences
Lw(N) at each word position w. Due to 1-to-1 word align-
ments, the lattice’s language cannot be decomposed as a cross-
product and concatenation (indicated by

∏
) of component sets:

Lu ̸=
∏

w∈u

Lw(N) (5)

There may be sequences in Lu that cannot be represented as a
concatenation of elements in Lw(N), even for large N .

3.3. Phrase-level alternatives

By contrast, all paths in the lattice can be represented as a subset
of the crossed and concatenated phrase-level alternatives [16]:

Lu ⊆ lim
N→∞

∏

p∈u

Lp(N) (6)

In this formulation Lp(N) is a set of up to N word sequences,
which may be of varying lengths, at phrase position p.

Table 4: Oracle WER for word-level alternatives.

WER N Nmax N.9 N.5 MB

ASR1 2.69 2 2 2 2 0.2
ASR1 1.35 10 10 10 2 0.4
ASR1 1.19 100 100 12 2 0.5
ASR1 1.19 ∞ 323 12 2 0.5

ASR2 6.98 2 2 2 1 0.2
ASR2 5.75 10 10 3 1 0.2
ASR2 5.74 ∞ 25 3 1 0.2

Table 5: Oracle WER for phrase-level alternatives.

WER N Nmax N.9 N.5 MB

ASR1 2.92 2 2 2 2 0.3
ASR1 1.08 10 10 10 3 0.6
ASR1 0.65 100 100 22 3 1.0
ASR1 0.57 1000 1000 22 3 1.3

3.4. Converting lattices to phrase alternatives

Phrase alternatives can be derived from a lattice as follows:

1. Word-align the lattice, which may need determinization.

2. Establish phrase boundaries as those times not crossed
by non-silence arcs (above some arc posterior threshold).

3. For each phrase, mask the lattice arcs outside the phrase
boundaries by setting their output symbols as epsilon.

4. Determinize each phrase-masked lattice, which removes
most epsilon arcs, and find N best paths (i.e. phrases).

The phrase alternatives representation is motivated by its
compactness compared to utterance-level alternatives, since it
decomposes the utterance as a concatenation of word sequences
that are assumed to be independent of each other. It is also more
expressive since this cross product generates additional word
sequences that may not have been present in the lattice.

3.5. Representing alternative hypotheses in NIST SCTK

A lesser-known feature of the CTM file format is that it can be
used to represent alternatives in ASR hypotheses, for example:

sw_4390 A * * <ALT_BEGIN>
sw_4390 A 4.49 0.66 UM
sw_4390 A * * <ALT>
sw_4390 A 4.49 0.66 I’M
sw_4390 A * * <ALT_END>

While this is typically used to represent alternations created by
filtering with the GLM file, it can be further leveraged to enable
oracle scoring of ASR alternatives at various levels. However,
this functionality requires a minor modification4 to the sclite
source code, as well as auxiliary software5 that can create the
CTM files while fixing a couple of related bugs in SCTK (such
as expanding doubly-nested alternatives after GLM filtering).

4https://github.com/usnistgov/SCTK/pull/34
5https://pypi.org/project/mod9-asr
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4. Speech Recognition Systems
Automatic (ASR) and human (HSR) systems were evaluated:

ASR1 is a Kaldi baseline. An OPGRU acoustic model and a
trigram language model were trained only on Switchboard plus
Fisher. These models were loaded by the Mod9 ASR Engine to
produce utterance-, word-, and phrase-level alternatives.

ASR1∗ customized the decoding graph by adding the 28
words that were out-of-vocabulary (OOV) with respect to the
system’s relatively small lexicon (about 40,000 words that ap-
peared in the training data). Pronunciations were automatically
generated with a grapheme-to-phoneme model [17] by request-
ing the Mod9 ASR Engine’s add-words command.

ASR1† used non-default pruning beam sizes to produce
denser lattices, by requesting a speed:3 option of the Mod9
ASR Engine, a trade-off with more compute and memory usage.

ASR1∗† combined both of the above settings.

ASR2 is IBM Watson with an older “Narrowband” model,
instead of using a more accurate “next-generation” model,
because this system is uniquely capable of demonstrating
utterance- and word-level alternatives at extreme depths.

ASR3 is Google Cloud Platform’s STT service, using an
“enhanced” variant of their “phone call” model.

ASR4 is Amazon Transcribe, configured for US English.
ASR5 is Microsoft Azure’s Speech-to-Text service, which

generates utterance-level alternatives of very limited depth.

ASR6 is the system in [2], from which IBM Research
shared CTM-formatted system outputs for evaluation purposes.

HSR1 is the Rev.com service, which has speaker labeling.
HSR2 is the TranscribeMe service, requesting “verbatim”

quality transcripts that include speaker labeling.
HSR3 is the TranscribeMe service, requesting “first draft”

quality transcripts that do not include speaker labeling.
HSR4 is the cielo24 service, with no speaker labeling.

5. Results
All results can be reproduced from system outputs6 that were
archived in early 2022, using open-source scoring scripts.7

The bottom row and right column of Table 1, middle sec-
tion of Table 2, and left columns of other tables have italicized
font. This convention is used to clarify which results might be
considered unrealistic, due to use of a reference segmentation or
also because of the oracle nature of selecting a best alternative.

Table 1 presents the WER results from scoring each of the
ASR systems with successively improved configurations of the
scoring tools, as described in Sections 2.1 through 2.4.

Table 2 compares the ASR and HSR systems, including pre-
cision and recall metrics in addition to WER. The results for
HSR3 and HSR4 are exceptional because they required conver-
sion of reference STM files into a single-channel format, using
forced-alignment with an HTK-based ASR system; regions of
overlapped speech may be incorrectly merged in some cases.
Dual-channel audio files were submitted to the HSR services,
so transcribers could understand conversations sides in context.

Table 2 also reports the cost of processing the Switchboard
test set, based on its duration of 100 minutes. For ASR with-
out reference segmentation, audio was presented as channel-

6https://mod9.io/switchboard-benchmark-results.tar.gz
7https://mod9.io/switchboard-benchmark-scripts.tar.gz

Table 6: Oracle WER for phrase-level alternatives: adding all
OOV words (ASR1∗); denser lattices (ASR†); and both (ASR∗†).

WER N Nmax N.9 N.5 MB

ASR1∗ 5.79 1 1 1 1 0.1
ASR1∗ 0.49 100 100 22 3 1.0
ASR1∗ 0.42 ∞ 5250 22 3 1.4

ASR1† 0.36 1000 1000 125 14 5.4
ASR1† 0.33 10000 10000 125 14 7.6

ASR1∗† 0.21 1000 1000 124 14 5.4
ASR1∗† 0.18 10000 10000 124 14 7.4

separated files, thus totaling 200 minutes, much of which was
silence. For ASR that exploited reference segmentation, audio
was presented as a collection of 1,834 short audio files, total-
ing 123 minutes. Note: ASR3 and ASR4 costs increase even as
less data is processed, since their respective policies are to bill
requests by rounding up to 15s granularity or at minimum 15s.

Tables 3, 4, 5, and 6 report the oracle WER when the NIST
SCTK scoring software is presented with CTM files that rep-
resent utterance-, word-, and phrase-level alternatives. These
results all use the reference segmentation, since the software
cannot score alternatives that cross STM segment boundaries.
Each table reports the parameter N that was requested, which
may be greater than the actual Nmax returned. The N.9 and N.5

columns indicate the depths of alternatives at the top decile and
median results; these convey the distribution more clearly than
the mean statistic. The rightmost columns report the storage
size of the gzip-compressed CTM files in megabytes.

The last row of Table 6 relates a hypothetical oracle select-
ing the best transcript from a phrase-level representation of al-
ternatives, derived from very dense lattices, decoded with added
knowledge of all OOV words, using a reference segmentation.

6. Conclusion
This work highlighted subtle issues with evaluating the famous
Switchboard benchmark. It presented a reproducible Kaldi ASR
baseline, comparing major cloud platforms to human transcrip-
tion services, and clarified that IBM’s research system achieves
a super-human record of 2.3% instead of 4.3% WER.

Some experiments are unrealistic to varying degrees, rang-
ing from the assumption of an oracle to the accepted use of a ref-
erence segmentation. Nonetheless, such results demonstrate the
potential for lattice-based ASR approaching 0.18% WER.

These results motivate future work to improve lattice gen-
eration [18, 19], particularly in E2E ASR systems. Our current
research also explores open-vocabulary decoding in a WFST
framework, in which novel words may be included in a lattice
and derived phrase alternatives. These advances enable new ap-
plications, e.g. audio search or machine-assisted transcription,
that can be designed to mitigate inevitable errors in 1-best ASR.
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