ISCA Archive Interspeech 2022
ISCA Archive Interspeech 2022

Two-pass Decoding and Cross-adaptation Based System Combination of End-to-end Conformer and Hybrid TDNN ASR Systems

Mingyu Cui, Jiajun Deng, Shoukang Hu, Xurong Xie, Tianzi Wang, Shujie Hu, Mengzhe Geng, Boyang Xue, Xunying Liu, Helen Meng

Fundamental modelling differences between hybrid and end-to-end (E2E) automatic speech recognition (ASR) systems create large diversity and complementarity among them. This paper investigates multi-pass rescoring and cross adaptation based system combination approaches for hybrid TDNN and Conformer E2E ASR systems. In multi-pass rescoring, state-of-the-art hybrid LF-MMI trained CNN-TDNN system featuring speed perturbation, SpecAugment and Bayesian learning hidden unit contributions (LHUC) speaker adaptation was used to produce initial N-best outputs before being rescored by the speaker adapted Conformer system using a 2-way cross system score interpolation. In cross adaptation, the hybrid CNN-TDNN system was adapted to the 1-best output of the Conformer system or vice versa. Experiments on the 300-hour Switchboard corpus suggest that the combined systems derived using either of the two system combination approaches outperformed the individual systems. The best combined system obtained using multi-pass rescoring produced statistically significant word error rate (WER) reductions of 2.5% to 3.9% absolute (22.5% to 28.9% relative) over the stand alone Conformer system on the NIST Hub5'00, Rt03 and Rt02 evaluation data.