
CNN-Based Processing of Acoustic and Radio Frequency Signals for Speaker

Localization from MAVs

Andrea Toma, Daniele Salvati, Carlo Drioli, Gian Luca Foresti

Dept. of Mathematics, Computer Science and Physics
University of Udine

Udine, Italy
{andrea.toma, daniele.salvati, carlo.drioli, gianluca.foresti}@uniud.it

Abstract

A novel speaker localization algorithm from micro aerial ve-

hicles (MAVs) is investigated. It introduces a joint direction

of arrival (DOA) and distance prediction method based on pro-

cessing and fusion of the multi-channel speech data with radio

frequency (RF) measurements of the received signal strength.

Possible applications include unmanned aerial vehicles (UAVs)-

based reconnaissance and surveillance against intrusions and

search and rescue in hostile environments. A 3-stages convo-

lutional neural network (CNN) with a fusion layer is proposed

to perform this task with the objective of augmenting the source

localization from multi-channel speech signals. Two parallel

CNNs process the speech and RF data, and the regression net-

work produces predictions of the angle and distance from the

source after the fusion layer. To show the performance and ef-

fectiveness of this RF-assisted method, the experimental sce-

nario and datasets are presented and experiments are then dis-

cussed along with the results that have been obtained.

Index Terms: Speaker localization, RF-assisted multi-channel

speech, direction of arrival and distance regression, multi-stage

convolutional neural network, speech and RF fusion

1. Introduction

Direction of arrival (DOA) estimation from a speaker is an im-

portant task in microphone array processing [1, 2, 3] and can

be applied in a number of different scenarios involving single

mobile robot [4] and mobile robot sensors networks [5], or a

team of drones [6]. When the speech recording is performed us-

ing microphone arrays installed on multirotor unmanned aerial

vehicles (UAVs) [7, 8, 9], the processing of speech signal

from acoustic sources of interest becomes especially challeng-

ing [10, 11]. Moreover, in the case of micro aerial vehicles

(MAVs) of small size, the consequent constraints on the size

of the microphone array [12] may lead to poor spatial resolu-

tion and range of detection issues [13]. As a matter of fact,

attempts to tackle the acoustic related problems typical of mul-

tirotor aerial systems have been documented only recently [14].

When a small-size microphone array must be adopted to fit the

size of a micro aerial device, a method which provides accept-

able spatial resolution even with small arrays and at low signal-

to-noise-ratio (SNR) is desirable.

Our work further expands the acoustic beamforming pre-

sented in [15], by investigating a novel radio frequency (RF)

processing coupled with the speech DOA estimation method for

an RF-assisted multi-channel speech localization where, in ad-

dition to DOA predictions, distance estimations from the source

are also extracted. When the speaker localization front-end de-

tects a speech activity originating from the direction estimated

by the RF antenna components, the speaker localization can

be refined and the recorded signal enhanced through an acous-

tic beamformer. The motivation to investigate such a strat-

egy comes from augmenting the beamforming-based acoustic

source localization for applications like UAV-based reconnais-

sance and surveillance against intrusions [16, 17], or in search

and rescue in hostile environments [18, 19], for example in pres-

ence of adverse weather conditions. In such scenarios, fusing

speech data with video could result to be infeasible, even if an

array of cameras is employed as in [20], especially in environ-

ments with occlusions, fog, smoke, or dust typical of disaster

areas [10] or when the target is out of the field of view (FoV).

To cope with these issues, we created a semi-simulated scenario

with real speech data and simulated RF data in order to validate

the algorithm by analysing its behaviour over the RF parame-

ters and antenna array setup. The proposed method is based

on fusion of the two kind of data, speech and RF. We consider

received signal strength (RSS) measurements [21] that can be

easily collected in wireless standards such as Wi-Fi where an

RSS indicator is already available. The proposed idea is based

on a distributed antenna array with fixed antenna spacing where

RSS measurements are collected at different space locations to

the antenna positions.

The use of deep learning in speech and audio processing ap-

plications for the improvement or the new design of multichan-

nel processing localization schemes has been explored only re-

cently [22, 23, 24], nonetheless their use is being investigated in

a variety of acoustic and speech oriented applications involving

multi-channel processing like in [25] where the multi-channel

spectral phase information is used as input of a convolutional

neural network (CNN) for the DOA estimation. Further investi-

gations about speaker localization using deep learning networks

can be found in [26, 27, 28].

In our study, we illustrate the performance of a multi-stage

CNN-based algorithm where two parallel stages process intrin-

sic features of the speech and RF data and the third stage per-

forms the data fusion and regression. Differently from previ-

ous works as in [15, 29], the RF-assisted algorithm proposed

in this work is capable of producing joint predictions of both

DOA and distance from the speaker. The small-size and low-

cost hardware configuration consists of a four-acoustic sensor

uniform linear array (ULA) mounted on a quadcopter MAV. In

our semi-simulated scenario, an antenna array is also located on

the MAV with the ULA as its centre. Both the antenna spacing

and the array orientation can be chosen according to an accuracy

goal. Acoustic and RF dataset are thus collected and simulated,

respectively.
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2. The speech and RF problem and data
models

We address the problem of detecting the speech activity of a

number of speakers positioned in front of a drone, to decide

who is the active speaker among them and to estimate the DOA

of the speech signal and distance of the sources. A solution is

proposed where the speech DOA is paired to an RF transmission

pattern analysis.

An array-based acoustic front-end is active, which is ca-

pable of speech activity detection, while the RF antenna array

allows the receiver to perform an analysis of radio signal power

patterns. The RF signal is emitted by transmitters located at

the speakers’ position. For example, modern smartphones are

equipped with a number of integrated antennas like 4G or 5G

(for voice and data communications), Wi-Fi, Bluetooth, global

positioning system (GPS), near field communication (NFC).

Wi-Fi or Bluetooth signals could then be measured for local-

ization purposes when 5G is unavailable or in presence of an

RF outage.

2.1. Speech Model

Let us refer to an ULA of M omnidirectional microphones and

to a far-field model for the acoustic source wave propagation.

Suppose that the acoustic wave from a speaker impinges upon

the array with a direction θ. In the short-time Fourier transform

domain, the data model of the multi-channel array signals can

be expressed in single-source scenario as [30]:

x(k, f) = a(f, θ)S(k, f) + v
e(k, f) + v(k, f) (1)

where k is the block time index, f is the frequency bin, a (f, θ)
is the array steering vector for the source direction θ, S (k, f) is

the source signal at the reference sensor, ve (k, f) is the nonsta-

tionary drone ego-noise that is composed by multiple narrow-

band harmonic noise originated by the electrical engines and

by the broadband aerodynamic noise induced by the propellers,

and v (k, f) is the additive noise that is assumed to be spatially

white Gaussian with zero mean and variance equals to σ2 for

all sensors.

Let Φ (k, f) = E
{
x (k, f)xH (k, f)

}
the covariance ma-

trix of the array signal, which is symmetric and positive def-

inite, and E {·} denotes mathematical expectation. The fre-

quency range for the computation of Φ (k, f) is (fmin, fmax).
Elements of the covariance matrix denote the correlation be-

tween various microphones and their phase values provide

source speaker delay information between each couple of mi-

crophones. In real-world applications, the covariance matrix

Φ (k, f) is unknown and has to be estimated. In general, the

estimation can be computed through the averaging of the array

signal blocks:

Φ̂(k, f) =
1

B

B−1∑

kb=0

x(k − kb, f)x
H(k − kb, f) (2)

where B is the number of snapshots in the average and f =
fmin, fmin + 1, . . . , fmax.

2.2. RF Model

The path loss model (PLM) can accurately describe the RSS

data in light of sight (LOS) conditions. Specifically, the path

loss of a communication channel can be defined as the ratio of

the transmited power to the received power. In general the dB
path loss is a non-negative number since the channel does not

contain active elements, and thus can only attenuate the signal.

The formulation is based on statistical analysis where an RF

signal travels from a transmitting antenna to the receiving one.

According to the Friis transmission equation from antenna and

propagation [31], the received power is affected by the signal

propagation in the wireless environment and by some channel

and antenna parameters forming the PLM [32]:

PLi,j

dB (di,j) = PLi
dB (d0) + 10α log

10

(
di,j
d0

)
(3)

where PLi,j

dB (di,j) is the path loss expressed in dB with

distance di,j from the i-th transmitter to the j-th receiver,

PLi
dB (d0) is the path loss at the reference distance d0 from

the i-th transmitter, and α is the attenuation factor. Assuming

omnidirectional antennas, the path loss at d0 only depends on

the transmitting node and is given by:

PLi
dB (d0) = −20 log

10

λi

4πd0
(4)

where λi = c/fi is the wavelength corresponding to the fre-

quency fi of the transmitted signal.

By denoting the RF signal power (in dBm units) transmit-

ted by the i-th transmitter with P i
t,dBm and the corresponding

power received by the j-th antenna at distance di,j from the

transmitter with P i,j

r,dBm (di,j), the path loss function can be

written as difference of the two powers:

PLi,j

dB (di,j) = P i
t,dBm − P i,j

r,dBm (di,j) . (5)

The received power can, then, be expressed as:

P i,j

r,dBm (di,j) = P i
r,dBm (d0)−10α log

10

(
di,j
d0

)
+ωi,j

(6)

where P i
r,dBm (d0) is the received power at the reference dis-

tance d0 from the i-th transmitter. The received power in Eq. 6

follows a log-decreasing law over the distance with the reduc-

tion rate determined by α.

Rapid variations of the received power due to multipath

(fast fading) are filtered out by averaging the instantaneous

power of the received signal over sufficiently short time in-

tervals (corresponding to an average over a few wavelengths).

Shadowing (slow fading) is typically modelled as a log-normal

random variable with zero-mean and standard deviation σw.

3. Proposed CNN Model with Speech and
RF Fusion

The two previous frameworks are then combined in an RF-

assisted speech localization. In this section, the architecture

of the proposed multi-stages CNN for regression with speech-

RF fusion is described in detail. It consists of 3 networks with

convolutional and fully connected layers. Two parallel CNNs

are employed to extract and process intrinsic features from the

multi-channel speech and the RF signals. These features dis-

criminate the input data according to the incident angles and the

distances from the source. The third network performs speech-

RF fusion and regression. It outputs not only DOA (θ̂) but also

distance (d̂) predictions simultaneously. Fig. 1 shows the layer

structure of the whole network in detail.

The speech-CNN processes 2-dimensional matrices con-

sisting of phase values computed from the elements in the

complex-valued estimated covariance matrix of the multi-

channel acoustic signal in Eq.2. These matrices consist of

M · M elements, with M being the number of acoustic chan-

nels. This can be represented by ∠ Φ̂(k, f) where ∠ denotes
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Figure 1: The architecture of the 3-stages CNN with a

fusion layer

the element-wise phase of the matrix Φ̂(k, f). By grouping

S frames of such matrices, a 3-dimensional M · M · S array

denoted with Xsp is obtained and form 1 input channel of the

Conv3d layer. The RF-CNN processes RSS values related to

the received power of RF signals from multiple transmitters to

multiple receivers, namely P i,j

r,dBm (di,j) with i = 1, . . . Ntx

and j = 1, . . . Nrx. The number of elements is N = Ntx ·Nrx

with Ntx the number of transmitters and Nrx the number of

receivers. They are processed by N input channels in the con-

volutional layer. S frames are processed at time so that each of

the N input channels of the Conv1d consists of 1-dimensional

array with S elements. This input of N channels with S ele-

ments each is denoted as Xrf . In both the CNNs, a convolu-

tional layer kernel operates filtering and activation on the input

data. The trained kernel is computed through an optimization

method to minimize the loss function intended as a measure of

distance between the CNN prediction and the target. The acti-

vation function generates the output of the convolutional layer.

In our network, the convolution layers with 64 convolutional fil-

ters learn intrinsic features in the corresponding input data. The

kernel size is n in Conv1d and (n1, n2, n3) in Conv3d where

different values can be investigated, and the activation is leaky-

ReLU in both of the layers. This is followed by a MaxPool layer

that performs a dimensionality reduction, and a fully connected

linear layer with leaky-ReLU activation in both of the branches.

They output a feature sample with 64 elements.

After fusion of the two feature vectors, regression is per-

formed in the prediction network by two fully connected linear

layers with 64 input feature sample size and leaky-ReLU activa-

tions are employed. In the regression process, linear activations

are used to predict values in the continuous range. In particu-

lar, the last linear layer produces two outputs for DOA (θ̂) and

distance (d̂) predictions.

4. Experimental Scenario and Datasets

The speech data was collected from a MAV equipped with a

compact ULA of four microphones. The MAV used was a

Parrot Bebop 1 quadcopter shown in Fig. 2, with a 250 mm

frame type, 400 g weight, and overall dimensions of 280x320

mm. The microphone array from a PlayStation Eye USB de-

vice was used as the audio front-end. This device provides a

four-microphone uniformly spaced linear array with total size

of 6 cm (the inter-microphone spacing being of 2 cm). The mi-

crophone array was fixed on the top of the MAV, centred with

respect to the four propellers. A foam rectangular shield was

put below the microphones.

Concerning the RF data, we have simulated a receiving an-

tenna array placed on the MAV with the ULA as its centre, Fig.

2. The array can be built by connecting USB Wi-Fi antenna de-

vices with spacing τ to a single board computer (SBC). The ge-

speaker + Tx 

Rx Wi-Fi antenna 

microphone array 

Figure 2: Simulated RF-assisted scenario (top) and two

system components: the microphone ULA (bottom-left)

and the Parrot Bebop (bottom-right)

ometric frontal axis of the antenna array is rotated with respect

to the frontal direction of the drone with angle Φ, in order to

avoid ill-posed situations from RF point of view. Each speaker

wears a transmitting antenna.

5. Experiments and Results

Experiments have been conducted to validate and demonstrate

the proposed method. A dataset was built, featuring two sub-

jects lying frontally with respect to the drone and speaking one

at a time at different positions. The two speakers were posi-

tioned symmetrically with respect to the frontal direction of the

drone, uttering the same sentence one at the time. The speech

signal characteristics are like in [15]. A set of 15 positions was

used according to the following distances (d) and angles (θ): 2,

3, and 4 meters at [−5, 5], [−10, 10], [−15, 15], [−20, 20], and

[−25, 25] degrees.

Concerning the simulated RF part, the channel attenuation

factor α, the noise standard deviation σw, and the received

power at the reference distance P i
r,dBm (d0) are assumed to be

independent from the transmitter-receiver paths and values that

can be observed in real shadowed areas with LOS propagation

and Wi-Fi communication have been considered for investiga-

tion. The mean value over 20 samples of RSS measurements is

taken.

The 3-stages CNN is implemented by using Pytorch. The

optimizer is Adam with learning rate 0.01 and the loss function

is MSELoss. Number of epochs: 5. The number of training

samples (off-line) is 76460, 67% of the whole dataset and num-

ber of testing samples (real-time) is 37660, 33% of the whole

dataset. Each training and testing sample has S = 50 frame

length. The speech angle matrix consists of 4 × 4 values from

the estimated covariance matrix, while the RSS array consists

of 4 values. Batch size is 64, for both speech and RF inputs, the

kernel size is 3 in Conv1d and (1, 1, 3) in Conv3D.

The performance of the proposed CNN-based speaker lo-

calization with fusion of speech and RF signals can be analysed

after computing the empirical Cumulative Distribution Function

(ECDF) of the distance and angle errors of the predictions ob-

tained during testing.

In Fig. 3, results obtained by setting α = 2.3, ωw = 3 or

6 dB, and P i
r,dBm (d0) = −23 or −30 dBm are shown. The

receiving antenna spacing τ is 0.5m while the frontal axis of the

antenna array with respect to the frontal direction of the drone

is rotated by Φ = 25 degrees. In the figure, the angle errors

are at most 2.1 degrees in half of the cases, while the distance
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(a)

(b)

Figure 3: ECDF at different RF channel conditions for a) angle

predictions and b) distance predictions

errors are less than 15 cm in half of the cases. The 90-percentile

values are less than 5.4 degrees for angle errors and less than 36

cm for distance errors.

In Fig. 4, the antenna spacing τ is set to 0.25 or 0.5m while

the angle Φ between the frontal axis of the antenna array and

the frontal direction of the drone is 25 or 60 degrees with fixed

α = 2.3, σw = 3 dB, and P i
r,dBm (d0) = −23 dBm. In the

case of different antenna array setup, the angle errors and the

distance errors show only small variations with respect the case

seen at different RF channel conditions with comparable values

of around 2 degrees and 13 cm as median values. Indeed, in

these experiments the angle and distance predictions resulted

to be robust under different RF channel conditions and antenna

array setup.

These results show that predictions in the order of a few de-

grees (for angle) and centimetres (for distance) can be obtained

thanks to the capability of the CNNs to extract feature informa-

tion, from both of the kind of data related to the ground truth of

angle and distance. The features are then used to perform the

regression on the data. These results, in comparison with previ-

ous work in [15] where root mean square error (RMSE) values

(degree) and the variance of the localization performance were

found to increase with the angle of the incident speech wave and

no distance predictions were computed, motivate us to futher in-

vestigate the proposed augmented data-driven method for future

applications to the MAVs-based speech source localization.

6. Conclusions and Future Work

An RF-assisted acoustic target localization has been proposed.

The idea consisted on pairing the microphone array for multi-

(a)

(b)

Figure 4: ECDF at different antenna array setup for a) angle

predictions and b) distance predictions

channel speech detection with a distributed antenna array placed

on a drone to collect RSS measurements from the target. The

proposed method is based on a three-stage CNN with two par-

allel networks for processing the RF and the speech data sepa-

rately, an RF and speech fusion layer to combine them, and a

regression layer.

Predictions of DOA of the speech signal and distance from

the acoustic source are produced simultaneously by the deep

network. The proposed approach has been validated in a semi-

simulated scenario where two speakers lie symmetrically with

respect to the frontal direction of a MAV and speak one at a

time at different positions. The RF data is obtained from the

PLM of RSS signal. The experiments have demonstrated the

performance of the proposed method with promising results for

predictions of both DOA and distance from the source and its

robustness under different RF channel conditions and antenna

array setup.

An experimental Wi-Fi based sensor data streaming archi-

tecture will be built in future work where high complexity pro-

cessing is decentralized on a ground station that receives the

data collected on-board by the drone in real-time. The proposed

approach will be then validated in a fully real scenario and un-

der different levels of speech signal degradation.
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