
Time Delay Estimation for Speaker Localization Using CNN-Based

Parametrized GCC-PHAT Features

Daniele Salvati, Carlo Drioli, Gian Luca Foresti

Department of Mathematics, Computer Science and Physics
University of Udine, Italy

{daniele.salvati, carlo.drioli, gianluca.foresti}@uniud.it

Abstract

We propose a time delay estimation (TDE) method for

speaker localization based on parametrized generalized cross-

correlation phase transform (PGCC-PHAT) functions and con-

volutional neural networks (CNNs). The PGCC-PHAT is used

to build a feature matrix, which gives TDE information of two

microphone signals with different normalization levels in the

cross-correlation functions. The feature matrix is processed

by a CNN, composed by several convolutional layers and fully

connected layers and by a regression output for the directly es-

timation of the time difference of arrival (TDOA). Simulations

in noisy and reverberant adverse conditions show that the pro-

posed method improves the TDOA estimation performance if

compared to the GCC-PHAT.

Index Terms: time delay estimation, parametrized generalized

cross-correlation, convolutional neural network, speaker local-

ization, microphone pair, time difference of arrival.

1. Introduction

Time delay estimation (TDE) methods are used to measure the

time difference of arrival (TDOA) of a sound source among two

spatially separated microphones retaining a central role in the

speech technology area. The speaker localization is important

in applications such as human-computer interaction, teleconfer-

encing systems, and robotics. The speaker position can be used

to electronically steered a beamformer to obtain a selective spa-

tially acquisition of the speech signal, to automatic steer a video

camera in multimedia applications, or to determinate binaural

cues for stereo imaging.

The generalized cross-correlation phase transform (GCC-

PHAT) [1] method is the most popular TDE technique, which is

based on a cross correlation function between filtered versions

of the received signals. The PHAT is a filter that uses the magni-

tude information of the cross-correlation to normalize the nar-

rowband components, increasing the resolution of the TDOA

function if compared to a simple cross-correlation. The GCC-

PHAT is thus computed in the frequency domain using the fast

Fourier transform (FFT), calculating the cross-spectrum, apply-

ing the PHAT filter, and computing the inverse FFT to obtain

the time-domain TDE function. The GCC-PHAT provides good

TDOA estimation in moderate noisy and reverberation condi-

tions.

However, TDE performance of the GCC-PHAT deteriorates

significantly when reverberation or noise is high. Many meth-

ods have been proposed to improve robustness in adverse con-

ditions. A class of TDE methods is based on the blind system

identification [2, 3, 4, 5], which focuses on impulse responses

between a source and the microphones. These methods require

a certain time for the convergence of the filter to estimate the

impulse responses, and in particular the direct path dominant

peak. Thus, the practical application of this class of methods is

very difficult. Other approaches exploit the use of redundant in-

formation among several microphones [6, 7, 8]. These methods

are thus useful when more than a microphone pair is available.

Recently, the interest around the use of machine learning

and multichannel processing methods is growing [9, 10, 11, 12,

13, 14, 15]. Learning-based methods have shown to be able

to exploit the multidimensional characteristics of a sensor array

and marked the way to new solutions. Few cases have addressed

the TDE problem with machine learning [16, 17, 18, 19]. In

[16], it is proposed a cross-correlation with time-frequency

masking predicted by a deep neural network based on bi-

directional long short term memory networks. The goal of the

deep learning masking is to emphasize the time-frequency units

dominated by the target speech. In [17], the cross-correlation

sequences are processed by a deep neural network with an out-

put of 10 dimensional vector for TDOA values. The frequency-

sliding GCC with a convolutional neural network (CNN) is pro-

posed in [18]. The frequency-sliding allows the calculation of

sub-band GCC for an arbitrary frequency band, and the CNN

is used as fully convolutional denoising autoencoder with the

output an entire TDE function. In [19], the TDOA is calculated

from raw waveforms with a residual CNN scheme including

however a joint speaker identification and localization task.

In this paper, we propose a novel TDE technique that is

based on parametrized GCC-PHAT (PGCC-PHAT) functions

and CNNs. A feature matrix, which consist in the GCC func-

tion with different parametrized PHAT filters, is the input of

a CNN that has a regression output for the directly estimation

of the TDOA. The PGCC-PHAT has the advantage of control-

ling the PHAT normalization in the GCC, since the PHAT has

the problem of emphasizing the noise in the frequency com-

ponents that have a low signal-to-noise ratio (SNR). The PHAT

performs well when the signal is broadband, i.e., when the spec-

tral components span all the frequency range used in the GCC.

However, it tends to degrade with narrowband speech compo-

nents in adverse conditions. We investigate the robustness of

the proposed CNN-based PGCC-PHAT with respect to adverse

noisy and reverberant condition using simulated experiments.

2. Signal Model and GCC-PHAT

Let us consider a reverberant room, two microphones positioned

at coordinates

rm = [xm, ym, zm]T , m = 1, 2, (1)

where (·)T denotes the transpose operator, and a single source

active at time t and positioned at coordinates

rs(t) = [xs(t), ys(t), zs(t)]
T
. (2)
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The signals received at the two microphones x1(t) and x2(t)
can be modeled as

x1(t) = (h1 ∗ s)(t) + n1(t),

x2(t) = (h2 ∗ s)(t) + n2(t),
(3)

where h1(t) and h2(t) represent the impulse responses of the

reverberant channels, s(t) is the speech signal, n1(t) and n2(t)
correspond to uncorrelated noise, and * denotes linear convolu-

tion. In the short-time Fourier transform domain, the data model

can be expressed as

X1(f, k) = H1(f)S(f, k) +N1(f, k),

X2(f, k) = H2(f)S(f, k) +N2(f, k),
(4)

where k is the block index, f is the frequency bin, X1(f, k)
and X1(f, k) are the discrete time Fourier transforms (DTFTs)

of the signals observed at microphones, S(f, k), N1(f, k) and

N2(f, k) are the DTFTs of s(t), n1(t) , and n2(t) respectively,

and Hm(f) is the time-invariant acoustic transfer function from

the source to the microphone m. We assume that the analysis

window L is sufficiently long to capture most of the room im-

pulse response such that the multiplicative transfer function ap-

proximation holds. The TDOA of the source at the microphones

at the time block k is given by

τs(k) =
||rs(k)− r1|| − ||rs(k)− r2||

c
, (5)

where rs(k) is the source position at block time k, || · || denotes

Euclidean norm, and c is the speed of sound.

The GCC-PHAT [1] is given by

R(τ, k) =
1

L

L−1∑

f=0

X1(f, k)X
∗

2 (f, k)

|X1(f, k)X∗

2
(f, k)|

e
j2πfτ

L , (6)

where τ is the time lag, (·)∗ denotes the complex conjugate,

j denotes the imaginary unit, L is the size of the frame, and

| · | denotes absolute value. The GCC-PHAT is computed in the

frequency domain and hence the TDE is calculated on a block-

by-block basis. The maximum TDOA in samples τmax for the

microphone pair is obtained as

τmax =
⌊ ||r1 − r2||fs

c

⌋
, (7)

where ⌊·⌋ denotes the floor function that maps a real number to

the largest previous integer and fs is the sampling frequency.

The admissible range of values for the TDOA is [-τmax,τmax],

thus the possible discrete TDOA values for the sensor pair are

2τmax +1. The function R(τ, k) is hence calculated for τ in the

range [-τmax,τmax]. The target TDOA at time block k is obtained

by searching the maximum as

τ̂s(k) = argmax
τ

[R(τ, k)]. (8)

The PHAT weighting function normalizes the amplitude of

the spectral density of the two signals and uses only the phase

information to compute the GCC. It places equal importance on

each frequency by dividing the spectrum by its magnitude. The

PHAT increases the resolution of the TDOA function if com-

pared to a simple cross-correlation, especially when the speech

signal spans all the frequency range. However, when the SNR

is low in some frequency bins, the PHAT normalization has the

effect of emphasizing the noise in the GCC.

3. CNN-based Parametrized GCC-PHAT

The proposed method is based on the extraction of a feature

matrix, which consists on PGCC-PHAT functions, from the two

microphone signals and on the use of a CNN for mapping the

feature matrix onto the target TDOA estimation.

The PHAT weighting can be generalized to parametrically

control the level of influence from the magnitude spectrum [20].

This transform will be referred to as the parametrized PHAT and

defined as

R(β, τ, k) =
1

L

L−1∑

f=0

X1(f, k)X
∗

2 (f, k)

|X1(f, k)X∗

2
(f, k)|β

e
j2πfτ

L , (9)

where β varies between 0 and 1. When β = 1, equation (9) be-

comes the conventional PHAT and the modulus of the Fourier

transform becomes 1 for all frequencies, when β = 0 the PHAT

has no effect on the original signal, and we have the cross-

correlation function. An intermediate value of β allows the ex-

ploitation of a certain amount of the PHAT filter normalization

and reduces at the same time the noise in some spectrum com-

ponents where the SNR is low.

We define a feature matrix based on the PGCC-PHAT with

different β values for the input of a CNN. The feature matrix is

given by

R(k) =





R(β1, τ1, k) R(β1, τ2, k)) . . . R(β1, τD, k)
R(β2, τ1, k) R(β2, τ2, k) . . . R(β2, τD, k)

...
...

...
...

R(βB , τ1, k) R(βB , τ2, k) . . . R(βB , τD, k)




,

(10)

where β1, β2, . . . , βB are the values for the parametrized

PHAT, B is total number of parametrized GCC-PHAT func-

tions, and τ1 = −τmax, τ2 = −τmax + 1, . . . , τD = τmax with

D = 2τmax + 1. The feature matrix has a dimension of B ×D.

We aim at designing a nonlinear function F (·,Θ) (Θ are

the parameters learned during the training), which maps the fea-

ture matrix R(k) for frame signals of length L, to the output

prediction TDOA τs(k) of the speaker

τs(k) = F (R(k),Θ). (11)

The goal is hence to model the nonlinear function transforming

the PGCC-PHAT with different β values into a TDOA estima-

tion value.

The overall network structure is composed of several con-

volution layers, followed by fully-connected layers. Last, a re-

gression layer provides the prediction of TDOA values. The

data undergoes a filtering and activation detection step operated

through the convolutional layer, as

H
l = σ(Wl ∗Hl−1 + b

l), (12)

where H
l and H

l−1 are feature maps in two consecutive lay-

ers, Wl is a trained kernel, bl is a bias parameter, σ(·) is the

activation function, and * denotes convolution. The rectified

linear unit (ReLU) [21] is a common operation for generating

the output of the convolutional layer. It computes the function

f(x) = max(0, x). The bias guarantees that every node has a

trainable constant value.

The output of the convolutional layers is then flattened to

create a single feature vector that is used as the input of one or

more fully connected layer, in which each neuron is connected

to all neurons of the previous layer. A fully connected layer
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feature matrix R(k)

3x3 conv, 32

batch normalization

ReLU

fully connected, 512

dropout 0.2

fully connected, 512

dropout 0.2

fully connected, 1

3x3 conv, 64

batch normalization

ReLU

3x3 conv, 128

batch normalization

ReLU

3x3 conv, 256

batch normalization

ReLU

3x3 conv, 512

batch normalization

ReLU

regression

ReLU

ReLU

TDOA estimation

Figure 1: The architecture of the CNN.

multiplies the input by a weight matrix and then adds a bias

vector

h
l
FC = σ(Wl

FCh
l−1

FC + b
l). (13)

The last component of the nonlinear function F (R(k),Θ)
is the regression output layer, in which the loss function is com-

puted with the mean squared error.

4. CNN Architecture

In this study, we use a length frame L of 1024 samples (64

ms) with a sampling rate of 16 kHz. We consider a distance

between microphones of 0.2 m, and assuming c = 340 m/s, we

have τmax = 9 samples, and D = 19. We consider B = 11
PHAT parameters with β1 = 0, β2 = 0.1, β3 = 0.2, . . . , and

βB = 1. The feature matrix has hence a dimension of 11× 19.

The architecture of the CNN mainly consists of 5 two-

dimensional convolutional layers and 3 fully connected layers.

After each convolutional layer, the batch normalization and the

activation with the ReLU are computed. In the first convolu-

tional layer, the number of filters is 32, and it is doubled for

each subsequent convolutional layer. Each kernel of the convo-

lutional layers has dimension 3 × 3. To enhance nonlinearity

and to reduce overfitting, 3 fully connected layers are used with

two dropout layers between them. The dropout layer is set with

a probability of 0.2. The first and the second fully connect lay-

ers have 512 neurons. The last fully connect layer has 1 neuron

for the regression output. Figure 1 shows the architecture of the

CNN.

5. Simulations

The speaker localization performance is illustrated through a

set of simulated experiments. The noisy conditions were con-

ducted with different SNR levels, obtained by adding mutu-

ally independent white Gaussian noise. The reverberant con-

ditions were simulated with an improved image-source model

[22]. The source speech signals used to generate noisy and re-

verberant speech were taken from the TSP speech database [23].

The TSP speech database consists of 1378 utterances spoken by

23 speakers (12 females, 11 males). Each utterance has a length

of about 2 s. The speech was recorded in an acoustic anechoic

room. The dataset partitioning is a 70-30 split of the number of

segments in training and test subsets. The training and the test

subsets consist of 889 and 389 utterances, respectively.

The network parameters of the proposed CNN-based

PGCC-PHAT are learned with the training dataset, simulating

different source positions with an incident angle on the micro-

phone pair in the range [-90, 90] degrees. The speaker positions

were simulated with a distance of 1 m from the center of the

two-microphone array. For each utterance a random SNR in

the range [0, 30] dB and a random reverberation time (RT60) in

the range [0, 0.7] s were computed. The reverberation was com-

puted with a simulated room of 5 m × 4 m × 3 m. The positions

of the microphones were (0.5, 1.9, 1.3) m and (0.5, 2.1, 1.3)
m. The distance between microphones was d = 0.2 m. The

889 training source positions were simulated at the same plane

of the microphones, i.e., z = 1.3 m. The training of the CNN

was computed through the Adam method [24]. The learning

rate was set to 0.001, the gradient decay factor to 0.9, and the

squared gradient decay factor to 0.999. The mini-batch size was

set to 128, and the number of epochs to 50.

The test was conducted in a simulated room of 4 m × 7 m ×
2.8 m, which is different from the training room. The positions

of the microphones were (0.2, 2.8, 1.7) m and (0.2, 3, 1.7) m.

The speaker position was randomly selected in the room with

z = 1.7 m (the same of microphones), with a distance from

the center of the array between 0.5 m and 3 m, and a minimum

distance from the walls of 0.5 m. The 389 testing source posi-

tions were thus with an incident angle on the microphone pair in

the range [-80, 85] degrees. The TDOA estimation performance

was computed for each frame of length L = 1024 samples. The
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Table 1: The RMSE (ms) for the TDOA estimation performance

at variation of SNR levels.

SNR (dB) Proposed GCC-PHAT

30 0.0707 0.1551

25 0.0823 0.1524

20 0.0965 0.1613

15 0.1176 0.1781

10 0.1422 0.2154

5 0.1707 0.2613

0 0.2017 0.3141

-5 0.2528 0.3744

-10 0.2993 0.4083

-15 0.3593 0.4621

Table 2: The RMSE (ms) for the TDOA estimation performance

at variation of reverberant conditions with an SNR of 30 dB.

RT60 (s) Proposed GCC-PHAT

0.1 0.0768 0.1629

0.2 0.1024 0.1963

0.3 0.1304 0.2357

0.4 0.1671 0.2766

0.5 0.1830 0.2840

0.6 0.2096 0.3180

0.7 0.2209 0.3265

0.8 0.2392 0.3426

0.9 0.2398 0.3492

1.0 0.2502 0.3584

TDE performance is measured with the root mean squared error

(RMSE) expressed in ms.

First, a simulation at variation of noisy conditions was con-

ducted. Table 1 reports the results at variation of the SNR level.

We can observe the improved accuracy and the robustness to

noise of the proposed method if compared to the GCC-PHAT.

We have a reduction of RMSE at an SNR of 30 dB with 0.1551-

0.0707=0.0844 ms for the proposed method. Note than 1 sam-

ple for the GCC-PHAT discretization corresponds to 0.0625 ms.

Up to 5 dB of SNR, we have a RMSE reduction minor than 0.1

ms and the RMSE reduction is greater than 0.1 m at low SNR

(≤ 0 dB).

Next, an evaluation at variation of reverberant conditions

was performed. Table 2 shows the TDE performance with a

RT60 in the range [0.1,1.0] s. The SNR was 30 dB. The im-

proved accuracy of the proposed method is obtained in all con-

ditions. We can underline the ability of the CNN-based PGCC-

PHAT in estimating the TDOA in a room with different re-

flection characteristics in comparison to the training simulated

room.

Last, in Table 3, we can see the TDOA estimation perfor-

mance in noisy condition (SNR=5 dB) at variation of reverber-

ant times. We can observe also in these simulations the im-

proved performance in comparisons to the GCC-PHAT.

Finally, Table 4 shows the RMSE at variation of the feature

matrix size B, i.e., the number of parametrized PHAT functions.

We consider B = 3 (β1 = 0, β2 = 0.5, β3 = 1), B = 11 (the

case of previous simulations) and B = 21 (from 0 to 1 with step

Table 3: The RMSE (ms) for the TDOA estimation performance

at variation of reverberant conditions in noisy conditions (SNR

= 5 dB).

RT60 (s) Proposed GCC-PHAT

0.1 0.1749 0.2648

0.2 0.1971 0.3029

0.3 0.2153 0.3245

0.4 0.2461 0.3539

0.5 0.2551 0.3729

0.6 0.2617 0.3780

0.7 0.2804 0.3938

0.8 0.2862 0.3985

0.9 0.2924 0.4055

1.0 0.3037 0.4130

Table 4: The RMSE (ms) for the TDOA estimation performance

at variation of the feature matrix size B. The RT60 was 0.8 s

and the SNR was 10 dB.

Proposed GCC-PHAT

B = 3 B = 11 B = 21

0.2808 0.2647 0.2676 0.3779

0.05). We can note the improvement performance with B = 3
if compared to the GCC-PHAT. However, we have the lower

RMSE when B = 11. In case of B = 21, a larger number of

parametrized PHAT functions does not provide an improvement

of the TDOA performance in comparison to the B = 11 case.

To conclude, we have the following average RMSE perfor-

mance of all simulations reported in Tables 1, 2, 3:

• 0.2042 ms for the proposed method;

• 0.3047 ms for the GCC-PHAT.

The CNN-based PGCC-PHAT is hence able of decreasing of

about 30 % the RMSE of the GCC-PHAT.

6. Conclusions

In this paper, we presented a TDE estimation method for

speaker localization using a microphone pair. The proposed

method consists in the computation of the feature matrix using

different normalized PGCC-PHAT functions. A CNN scheme is

proposed for the recognition of the feature matrices to directly

estimate the TDOA of the speech source at the microphones.

We have demonstrated that the CNN-based PGCC-PHAT in-

creases the accuracy of the TDOA estimation and it is more ro-

bust to noise and reverberation if compared to the GCC-PHAT.

Future works include the performance evaluation with real-

world data and the analysis of the computational cost for the

evaluation in realtime applications.
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