This paper proposes a multi-task learning network with phoneme-aware and channel-wise attentive learning strategies for text-dependent Speaker Verification (SV). In the proposed structure, the frame-level multi-task learning along with the segment-level adversarial learning is adopted for speaker embedding extraction. The phoneme-aware attentive pooling is exploited on frame-level features in the main network for speaker classifier, with the corresponding posterior probability for the phoneme distribution in the auxiliary subnet. Further, the introduction of Squeeze and Excitation (SE-block) performs dynamic channel-wise feature recalibration, which improves the representational ability. The proposed method exploits speaker idiosyncrasies associated with pass-phrases, and is further improved by the phoneme-aware attentive pooling and SE-block from temporal and channel-wise aspects, respectively. The experiments conducted on RSR2015 Part 1 database confirm that the proposed system achieves outstanding results for text-dependent SV.