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Abstract
This paper addresses a noise-robust automatic speech recogni-
tion (ASR) method under the constraints of real-time, one-pass,
and single-channel processing. Under such strong constraints,
single-channel speech enhancement becomes a key technology
because methods with multiple-passes or batch processing, such
as acoustic model adaptation, are not suitable for use. However,
single-channel speech enhancement often degrades ASR per-
formance due to speech distortion. To overcome this problem,
we propose a noise robust acoustic modeling method based on
the stream-wise transformer model. The proposed method ac-
cepts multi-stream features obtained by multiple single-channel
speech enhancement methods as input and selectively uses an
appropriate feature stream according to the noise environment
by paying attention to the noteworthy stream on the basis of
multi-head attention. The proposed method considers the atten-
tion for the stream direction instead of the time series direction,
and it is thus capable of real-time and low-latency processing.
Comparative evaluations reveal that the proposed method suc-
cessfully improves the accuracy of ASR in noisy environments
and reduces the number of model parameters even under strong
constraints.
Index Terms: noise robust ASR, one-pass single-channel pro-
cessing, speech enhancement, stream-wise transformer

1. Introduction
Ensuring the noise robustness of automatic speech recognition
(ASR) in daily environments is a crucial problem for high-
quality ASR applications. We have become keenly aware of this
problem through our research and development of a speech-to-
speech multilingual translation application for mobile devices
and an automatic subtitling system for broadcasting programs.

To overcome this crucial problem, various noise robust
ASR methods have been studied for many years. The sim-
plest way to ensure noise robustness is speech enhancement
in the front-end processing of ASR. As representative legacy
methods, spectral subtraction (SS) [1], minimum mean squared
error-short term spectral amplitude estimation (MMSE-STSA)
[2], and Gaussian mixture model-based feature enhancement
(GMM-FE) [3] have been widely used. Recent deep-learning-
based approaches, such as the use of a de-noising auto-encoder
(DAE) [4] and binary masking [5], have demonstrated higher
performance than legacy methods. In addition, deep-learning-
based approaches with direct input–output of the raw wave-
form have been proposed and shown excellent performance
[6, 7, 8]. Speech enhancement is the simplest way to achieve
noise robust ASR; however, the distortion caused by speech en-
hancement often degrades the performance of ASR. This per-
formance degradation is notable in recent deep neural network-
based ASR frameworks, especially in single-channel process-
ing. In contrast, multi-channel processing provides a notable

improvement in noisy speech ASR, and various methods have
been proposed; e.g., methods based on microphone-array signal
processing [9, 10, 11, 12] and methods based on deep-learning
[13, 14, 15]. Although multi-channel processing has remarkable
performance, it requires special hardware equipments, such as
a microphone-array and a multi-channel microphone amplifier.
These hardware requirements pose a difficult problem for im-
plementing speech applications in a mobile environment and
for deploying applications in a typical office environment.

As alternatives to front-end processing, advanced acoustic
models (AMs) with complicated network architectures, e.g., the
convolutional neural network (CNN) [16, 17], recurrent neu-
ral network (RNN) with long short-term memory (LSTM) [18],
and convolutional LSTM (CLSTM) [19, 20] have attracted at-
tention as alternatives to simple fully-connected feed-forward
networks. However, these advanced models may not be fully
effective if they are simply applied to noise-robust ASR. A
single-channel speech input and one-pass framework in real-
time (low-latency) processing are mandatory for our research
and development targets in speech applications. Therefore, it is
necessary to avoid methods that require multi-pass and iterative
batch processing, such as off-line AM adaptation and rescoring
with RNN language models.

To address the aforementioned problems, we have proposed
a multi-stream input model [21] that takes multiple enhanced
speech features as input. This model adopts the gating mech-
anism used in LSTM to focus on appropriate enhanced speech
features. However, this model does not consider the relation-
ship between feature streams. As a method of focusing on
a specific feature, the use of attention models has been pro-
posed in the research fields of machine translation and natural
language processing. Representative attention models are an
LSTM-based seq-to-seq model [22] and a transformer model
[23]. These attention models have also been used for AMs in
ASR [24, 25, 26]. In addition, a CNN-based transformer model,
known as the conformer model [27] and multi-stream models
[28, 29], has been proposed for a state-of-the-art end-to-end
ASR. Inspired by the recent excellent success of the attention
model, this paper proposes a stream-wise transformer model
that pays attention to the stream direction rather than to the time
series direction. Unlike the conventional transformer model, the
proposed method requires no long-term observation of the fea-
ture sequence and can achieve real-time and low-latency pro-
cessing because it pays attention to an appropriate speech fea-
ture stream among multiple enhanced speech streams in a cer-
tain time frame.

We evaluate the proposed method on the CHiME4 1-
channel track [30] and the corpus of spontaneous Japanese
(CSJ) [31, 32]. Results reveal that the proposed method im-
proves the accuracy of ASR in noisy environments and reduces
the number of model parameters, even under the constraints of
real-time, one-pass, and single-channel processing.
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Figure 1: Network structures for a multi-stream input model

2. Multi-stream input acoustic modeling
This section briefly reviews our previously proposed multi-
stream input model [21]. The structure of the multi-stream input
model is shown in Fig. 1. In the figure, the signal processing
unit extracts noisy speech features and N types of enhanced
speech features from the input single-channel noisy waveform
and uses them as input to the model. Therefore, the multi-
stream input model allows not only noisy features but also ad-
ditional N types of enhanced feature to be input. Here, each
feature parameter consists of 40 log mel-filter bank features
(FBanks) and their first and second derivatives, which are ex-
tracted using a Hamming window with a 25-ms frame length
and 10-ms frame shift. A context window with 11 (±5) frames
is also applied to each feature. Since each speech enhancement
method has its own limitations, this model accepts multiple in-
puts of enhanced FBanks in order to achieve robustness against
various noise environments. In addition, since the input of en-
hanced FBanks alone may degrade the ASR accuracy due to the
influence of speech distortion caused by speech enhancement,
noisy FBanks are also input to reduce influence of speech dis-
tortion.

As shown in Fig. 1, all features are propagated to individual
sub-networks, and the outputs of each sub-network are merged
into a single data flow. Using these sub-networks, advanced fea-
ture extraction can be performed in contrast with the case that
multiple features are simply input to the model. In addition, we
introduce a gating mechanism used in LSTM to selectively use
noteworthy input features. The multi-stream input model does
not require multiple-passes, multiple-channels, batch process-
ing, or high-latency processing.

3. Stream-wise transformer modeling
The aforementioned multi-stream input model uses gate lay-
ers to independently select noteworthy input features for each
stream; however, the relative relationship between streams is
not considered. We therefore introduce an attention mecha-
nism that considers the relationship between streams and clari-
fies which streams should receive attention. Various attention-
based model have been proposed. In this paper, we adopt the
transformer model [23], which has been used in the research
fields of machine translation and natural language processing,
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Figure 3: Stream-wise multi-head attention unit

as the AM.
The conventional transformer model has a multi-head at-

tention unit. As shown in Fig. 2, the input to the conventional
multi-head attention unit is a time series of feature xt, and the
multi-head attention unit investigates which time of the feature
sequence to pay attention to. In contrast, the proposed method
uses the multi-stream feature, which is the output of the signal
processing unit, as the input to the multi-head attention unit as
shown in Fig. 3. The proposed method thus considers the at-
tention for the stream direction instead of the time series direc-
tion. We call this method the stream-wise multi-head attention
method and call the transformer model with the stream-wise
multi-head attention unit the stream-wise transformer model.

The structure of the stream-wise transformer model is
shown in Fig. 4. The input to the encoder of the stream-wise
transformer model is multi-stream features in the t-th frame,
which is the output of the signal processing unit. Meanwhile,
the input to the decoder is only a noisy feature in the t-th frame.
Here, since the input to the decoder is only a noisy feature, the
self-attention in the decoder may be meaningless. Therefore,
in the proposed method, we also consider the structure without
self-attention in the decoder as shown in Fig. 5.

The features input to the conventional transformer model
may have different time lengths and it is necessary to prohibit
references to future information. Therefore, feature masking is
required before inputting the features to the multi-head atten-
tion unit. In contrast, the proposed method requires no feature
masking because all the information is observable at the time of
input to the stream-wise multi-head attention unit.

Moreover, for additional advanced feature extraction and
dimension reduction, we investigate the insertion of a CNN-
based sub-sampling unit as shown in Fig. 6 between the signal
processing unit and stream-wise transformer model.

4. Experiments with the CHiME4 corpus
The proposed method was evaluated on the CHiME4 1-channel
track [30].

4.1. Experimental setup

The CHiME4 corpus was recorded using a tablet device
equipped with six microphones in four types of noise envi-
ronment: a public transportation platform, cafeteria, pedestrian
area, and street intersection. The training set consists of 1,600
real and 7,138 simulated (Simu) utterances spoken by four and
83 speakers, respectively. The amount of training data is about
18.0 hours and the vocabulary size is 5k words. The develop-
ment and evaluation sets consist of 3,280 and 2,640 utterances,
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Figure 4: Stream-wise transformer model
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Figure 5: Stream-wise transformer model without self-attention
in the decoder layer

respectively, each containing equal quantities of real and sim-
ulated data. Both the real and simulated sets were spoken by
four speakers, respectively. The development set was used for
cross validation during AM training and parameter tuning. In
the CHiME4 1-channel track, the speech data recorded by the
fifth microphone was used for an evaluation.

The speech enhancement methods used in the evaluation
were SS, MMSE-STSA, GMM-FE, DAE, and Conv-TasNet [7].
All these enhancement methods are capable of frame-by-frame
real-time processing. The GMM for GMM-FE and DAE were
trained using clean simulation data and real data recorded using
a headset microphone. The Gaussian mixture model consisted
of 512 Gaussian distributions. The DAE was trained using uni-
directional CLSTM [20] which consists of 32 filters with 3× 3
shape and a hyperbolic tangent activation function. The struc-
ture of Conv-TasNet follows that in the literature [7].

All AMs were trained using PyTorch [33], and ASR de-
coding with trained AMs was conducted using the Kaldi [34].
The AM of the baseline system consisted of a fully connected
feed-forward network with seven hidden layers. Each hidden
layer has 2048 units, and the activation function was paramet-
ric rectified linear unit (PReLU) [35]. The structure of the
multi-stream input model is shown in Fig. 1, and five different
speech enhancement methods were used. Therefore, the num-
ber of input feature streams was six, including noisy features.
The features input to the encoder of the proposed stream-wise
transformer were the same as those of the multi-stream input
model, and features input to the decoder were only noisy fea-
tures . The number of heads for multi-head attention and the
numbers of layers for the encoder and decoder were adjusted
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Figure 6: CNN-based sub-sampling unit

using the developement data. The target labels, which consisted
of 1,967 context dependent-hidden Markov model (CD-HMM)
states, were obtained using the Kaldi CHiME4 recipe [36]. In
the training phase, the parameters of each AM were randomly
initialized and optimized using momentum stochastic gradient
descent with a cross entropy criterion. A mini-batch of 256
frames and an initial learning rate of 0.02 were used for opti-
mization.

The training of the tri-gram language model also followed
the Kaldi CHiME4 recipe. The ASR experiments were per-
formed using fully composed weighted finite state transducers
with the AMs. The evaluation criterion was the word error rate
(WER).

4.2. Experimental results

Table 1 indicates the WERs obtained for each speech enhance-
ment method1. In the table, Baseline refers to the results ob-
tained without speech enhancement. The table shows that the
results of each speech enhancement were either worse or only
slightly better than those of the baseline. With Conv-TasNet,
an absolute WER improvement of approximately 2.7% was ob-
tained for real evaluation data; however, this is not a sufficient
performance improvement.

Meanwhile, Tables 2 and 3 indicate the model structure,
the number of model parameters, and WERs obtained with the
multi-stream input model (MSI) and proposed methods. In the
proposed method, the following four types of model structures
were evaluated.

STF: Stream-wise transformer model
STF-NoDS: STF without decoder self-attention
STF-C: STF with the CNN-based sub-sampling unit
STF-NoDS-C: STF-C without decoder self-attention

The table shows that the proposed stream-wise transformer
models outperformed the previously proposed multi-stream in-
put model. It also confirms that the decoder self-attention does
not notably affect the WER performance. Therefore, the pro-
posed method without decoder self-attention has the advantage
that almost the same results are obtained even if the number
of model parameters is reduced. In addition, further WER im-
provement and model parameter size reduction are achieved us-
ing the CNN-based sub-sampling units. Finally, the proposed
method, STF-NoDS-C, achieved a 6% absolute WER reduction
with real evaluation data and 50% reduction in the number of
model parameters compared with the baseline results, demon-
strating the effectiveness of the proposed method.

1To reduce influence of speech distortion, the original noisy speech
was added to the enhanced speech before training and evaluation.
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Table 1: ASR results for speech enhancement with the CHiME4
1-channel track in terms of the WER (%)

Enhancement Development set Evaluation set
method Simu Real Simu Real
Baseline 13.85 15.13 15.89 23.31
SS 14.51 15.23 16.12 23.66
MMSE-STSA 13.95 15.04 15.94 23.06
GMM-FE 13.45 14.62 15.49 22.99
DAE 13.42 14.35 15.36 22.52
Conv-TasNet 11.94 12.76 13.82 21.03

Table 2: Structure and the number of parameters for each model
of the CHiME4 1-channel track

Model #Heads #Encoder #Decoder #Params.
architecture layers layers
Baseline — — — 30.5M
MSI — — — 167.6M
STF 8 3 3 93.4M
STF-NoDS 4 1 4 61.6M
STF-C 8 1 2 18.0M
STF-NoDS-C 8 1 2 15.3M

Table 3: ASR results for the proposed methods with the CHiME4
1-channel track in terms of the WER (%)

Model Development set Evaluation set
architecture Simu Real Simu Real
Baseline 13.85 15.13 15.89 23.31
MSI 10.90 11.20 12.87 18.54
STF 10.47 10.51 12.23 18.14
STF-NoDS 10.53 10.38 12.24 17.87
STF-C 9.97 10.12 11.64 17.09
STF-NoDS-C 10.31 10.32 11.72 17.17

5. Evaluation on the CSJ corpus

We also evaluated the proposed method on the CSJ [31, 32], a
large-scale corpus of the Japanese language, to demonstrate the
effectiveness of the proposed method.

5.1. Experimental setup

The CSJ consists of recordings of academic lectures in
Japanese. We used 957 lectures (240.0 hours) as the train-
ing (Train) set. During training, ten lectures (2.0 hours) were
selected as the development (Dev) set. Three official evalua-
tion (Eval) sets, E01 (2.0 hours), E02 (2.1 hours), and E03 (1.4
hours), were used for ASR evaluation. Each evaluation set con-
sisted of ten lectures. The CSJ was recorded under clean condi-
tions using headset microphones, and we thus added four noise
data (for an airport lobby, exhibition hall, shopping mall, and
train station) artificially to each data set with randomly selected
signal-to-noise (SNR) ranges of 0 to 10 dB. The noise data were
taken from the ATR ambient noise sound database [37]. We de-
signed closed-domain sets and open-domain sets for evaluation
data. The details of the noise conditions for each dataset are
given in Table 4.

The vocabulary size of the CSJ is approximately 75k words.
The target labels, which consist of 9,512 CD-HMM states, were
obtained using the Kaldi CSJ recipe [38]. The other conditions
for acoustic modeling were the same as those in the aforemen-
tioned CHiME4 evaluations. The WERs for each evaluation set
under the clean conditions were 14.04% for E01, 11.12% for
E02, and 15.1% for E03.

Table 4: Noise conditions for evaluation on the CSJ

Data set Noise type SNR ranges
Train Airport lobby and exhibition hall 0–10 dB
Dev Airport lobby and exhibition hall 0–10 dB
Eval (closed) Airport lobby and exhibition hall 0–10 dB
Eval (open) Shopping mall and train station 0–10 dB

Table 5: ASR results for speech enhancement on the CSJ in
terms of the WER (%)

Enhancement Closed domain Open domain
method E01 E02 E03 E01 E02 E03
Baseline 15.78 13.51 16.74 20.59 21.20 21.11
SS 16.26 13.74 17.00 21.08 21.36 21.76
MMSE-STSA 15.89 13.67 16.99 20.86 21.67 21.35
GMM-FE 15.71 13.65 16.70 20.72 21.27 20.89
DAE 15.51 13.60 16.63 20.69 21.27 20.82
Conv-TasNet 15.61 13.32 16.59 20.44 21.23 21.01

Table 6: Structure and the number of parameters for each model
on the CSJ

Model #Heads #Encoder #Decoder #Params.
architecture layers layers
Baseline — — — 45.2M
MSI — — — 182.3M
STF 4 3 4 121.3M
STF-NoDS 4 3 4 94.7M
STF-C 8 2 2 26.1M
STF-NoDS-C 4 1 2 17.0M

Table 7: ASR results for the proposed method on the CSJ in
terms of the WER (%).

Model Closed domain Open domain
architecture E01 E02 E03 E01 E02 E03
Baseline 15.78 13.51 16.74 20.59 21.20 21.11
MSI 13.81 11.56 14.77 18.47 18.24 18.60
STF 13.38 11.19 14.03 18.33 18.51 17.74
STF-NoDS 13.34 11.15 14.03 18.14 18.59 18.04
STF-C 12.87 10.74 13.71 17.80 17.23 17.22
STF-NoDS-C 12.96 10.86 14.08 17.88 17.50 17.45

5.2. Experimental results

Table 5 indicates the WERs obtained for each speech enhance-
ment method. Similar to the case for the CHiME4 results, it is
seen that speech enhancement alone is not effective. Tables 6
and 7 show that the proposed method both improved the WER
significantly and reduced the number of model parameters even
for the CSJ corpus. These results demonstrate that the proposed
method is effective regardless of the ASR task.

6. Conclusions
This paper described a noise robust ASR method that effec-
tively works under the constraints of real-time, one-pass, and
single-channel processing. The proposed stream-wise trans-
former model, which accepts multi-stream features obtained by
multiple single-channel speech enhancement methods as input
and selectively uses an appropriate feature stream according to
the noise environment by paying attention to the noteworthy
stream, improved the ASR accuracy in noisy environments and
reduced the number of model parameters. In the near future, we
will consider incorporating various state-of-the-art model struc-
tures, such as a conformer. Additionally, we will attempt to
build the signal processing unit as a trainable module and to
construct an end-to-end model that can be jointly optimized.

284



7. References
[1] S. F. Boll, “Suppression of acoustic noise in speech using spectral

subtraction,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 27, no. 2, pp. 113–120, April 1979.

[2] Y. Ephraim and D. Malah, “Speech enhancement using a mini-
mum mean-square error short-time spectral amplitude estimator,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 32, no. 6, pp. 1109–1121, December 1984.

[3] J. C. Segura, A. d. l. Torre, M. C. Benı́tez, and A. M. Peinado,
“Model-based compensation of the additive noise for continuous
speech recognition. Experiments using AURORA II database and
tasks,” in Proc. of Eurospeech ’01, vol. I, September 2001, pp.
221–224.

[4] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhance-
ment based on deep denoising autoencoder,” in Proc. of Inter-
speech ’13, August 2013, pp. 436–440.

[5] B. Li and K. C. Sim, “Improving robustness of deep neural net-
works via spectral masking for automatic speech recognition,” in
Proc. of ASRU ’13, December 2013, pp. 279–284.

[6] S. W. Fu, Y. Tsao, X. Lu, and H. Kawai, “Raw waveform-based
speech enhancement by fully convolutional networks,” in Proc. of
APSIPA ’17, December 2017, pp. 6–12.

[7] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal
time ‒ frequency magnitude masking for speech separation,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 27, no. 8, pp. 1256–1266, May 2019.

[8] K. Kinoshita, T. Ochiai, M. Delcroix, and T. Nakatani, “Improv-
ing noise robust automatic speech recognition with single-channel
time-domain enhancement network,” in Proc. of ICASSP ’20,
May 2020, pp. 7004–7008.

[9] E. A. P. Habets, J. Benesty, S. Gannot, and I. Cohen, Speech
processing in modern communication–Challenges and perspec-
tives, Chapter 9: The MVDR beamformer for speech enhance-
ment. Springer–Verlag, Decemver 2009.

[10] T. Higuchi, N. Ito, T. Yoshioka, and T. Nakatani, “Robust MVDR
beamforming using time-frequency masks for online/offline ASR
in noise,” in Proc. of ICASSP ’16, March 2015, pp. 5210–5214.

[11] H. Erdogan, J. Hershey, S. Watanabe, M. Mandel, and J. L. Roux,
“Improved MVDR beamforming using single–channel mask pre-
diction networks,” in Proc. of Interspeech ’16, September 2016,
pp. 1981–1985.

[12] X. Xiao, S. Zhao, D. L. Jones, E. S. Chng, and H. Li, “On time-
frequency mask estimation for MVDR beamforming with applica-
tion in robust speech recognition,” in Proc. of ICASSP ’17, March
2017, pp. 3246–3250.

[13] X. Xiao, S. Watanabe, H. Erdogan, L. Lu, J. Hershey, M. L.
Seltzer, G. Chen, Y. Zhang, M. Mandel, and D. Yu, “Deep beam-
forming networks for multi-channel speech recognition,” in Proc.
of ICASSP ’16, March 2016, pp. 5745–5749.

[14] J. Heymann, L. Drude, and R. Haeb-Umbach, “A generic neu-
ral acoustic beamforming architecture for robust multi-channel
speech processing,” Computer Speech & Language, vol. 46, pp.
374–385, November 2017.

[15] T. Ochiai, M. Delcroix, R. Ikeshita, K. Kinoshita, T. Nakatani, and
S. Araki, “Beam-TasNet: Time-domain audio separation network
meets frequency-domain beamformer,” in Proc. of ICASSP ’20,
May 2020, pp. 6384–6388.

[16] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and
D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 22, no. 10, pp. 1533–1545, October 2014.

[17] T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for LVCSR,” Neural Net-
works, vol. 64, pp. 39–48, 2015.

[18] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic mod-
eling,” in Proc. of Interspeech ’14, September 2014, pp. 338–342.

[19] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo,
“Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” in Proc. of NIPS ’15, December 2015,
pp. 802–810.

[20] M. Fujimoto and H. Kawai, “Comparative evaluations of vari-
ous factored deep convolutional RNN architectures for noise ro-
bust speech recognition,” in Proc. of ICASSP ’18, April 2018, pp.
4829–4843.

[21] ——, “One-pass single-channel noisy speech recognition using a
combination of noisy and enhanced features,” in Proc. of Inter-
speech ’19, September 2019, pp. 486–490.

[22] T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proc. of
EMNLP ’15, September 2015, pp. 1412–1421.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proc. of NeurlIPS ’17, December 2017.

[24] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hy-
brid CTC/attention architecture for end-to-end speech recogni-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 11, no. 8, pp. 1240–1253, September 2017.

[25] L. Dong, S. Xu, and B. Xu, “Speech-Transformer: A no-
recurrence sequence-to-sequence model for speech recognition,”
in Proc. of ICASSP ’18, April 2018, pp. 5884–5888.

[26] Y. Wang, A. Mohamed, D. Le, C. Liu, A. Xiao, J. Mahadeokar,
H. Huang, A. Tjandra, X. Zhang, F. Zhang, C. Fuegen, G. Zweig,
and M. L. Seltzer, “Transformer-based acoustic modeling for hy-
brid speech recognition,” in Proc. of ICASSP ’20, May 2020, pp.
6874–6878.

[27] A. Gulati, J. Qin, C. C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented transformer for speech recognition,” in
Proc. of Interspeech ’20, October 2020, pp. 5036–5040.

[28] R. Li, X. Wang, S. H. Mallidi, S. Watanabe, T. Hori, and
H. Hermansky, “Multi-stream end-to-end speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 28, pp. 646–655, December 2019.

[29] J. Pan, J. Shapiro, J. Wohlwend, K. J. Han, T. Lei, and T. Ma,
“ASAPP-ASR: Multistream CNN and self-attentive SRU for
SOTA speech recognition,” in Proc. of Interspeech ’20, October
2020, pp. 16–20.

[30] “The 4th CHiME speech separation and recognition challenge,”
http://spandh.dcs.shef.ac.uk/chime challenge/chime2016/.

[31] K. Maekawa, “Corpus of spontaneous Japanese: Its design and
evaluation,” in Proc. of ISCA & IEEE Workshop on Spontaneous
Speech Processing and Recognition, April 2003.

[32] T. Kawahara, H. Nanjo, T. Shinozaki, and S. Furui, “Bench-
mark test for speech recognition using the corpus of spontaneous
Japanese,” in Proc. of ISCA & IEEE Workshop on Spontaneous
Speech Processing and Recognition, April 2003.

[33] “PyTorch,” https://pytorch.org/.

[34] “Kaldi ASR tool-kit,” http://kaldi-asr.org/.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,”
in Proc. of ICCV ’15, December 2015, pp. 1026–1034.

[36] “Kaldi CHiME4 recipe,” https://github.com/kaldi-
asr/kaldi/tree/master/egs/chime4/.

[37] T. Endo, T. Horiuchi, T. Shimizu, and S. Nakamura, “Speech
recognition experiments with ATR ambient noise sound database
– ATRANS –,” in Prpc. of IPSJ SIG Technical Report, no. 2005–
SLP–57 (8), July 2005, pp. 43–48, (in Japanese).

[38] T. Moriya, T. Tanaka, T. Shinozaki, A. Watanabe, and K. Duh,
“Automation of system building for state–of–the–art large vocab-
ulary speech recognition using evolution strategy,” in Proc. of
ASRU ’15, December 2015, pp. 610–616.

285


