
Transfer Learning and Data Augmentation Techniques to the COVID-19
Identification Tasks in ComParE 2021

Edresson Casanova1, Arnaldo Candido Jr.2, Ricardo Corso Fernandes Jr.2, Marcelo Finger3,
Lucas Rafael Stefanel Gris2, Moacir A. Ponti1, Daniel Peixoto Pinto da Silva2

1 Instituto de Ciências Matemáticas e de Computação, University of São Paulo, Brazil
2 Federal University of Technology – Paraná, Brazil

3 Dept. of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Brazil
edresson@usp.br

Abstract
In this work, we propose several techniques to address data
scarceness in ComParE 2021 COVID-19 identification tasks for
the application of deep models such as Convolutional Neural
Networks. Data is initially preprocessed into spectrogram or
MFCC-gram formats. After preprocessing, we combine three
different data augmentation techniques to be applied in model
training. Then we employ transfer learning techniques from
pretrained audio neural networks. Those techniques are applied
to several distinct neural architectures. For COVID-19 identi-
fication in speech segments, we obtained competitive results.
On the other hand, in the identification task based on cough
data, we succeeded in producing a noticeable improvement on
existing baselines, reaching 75.9% unweighted average recall
(UAR).
Index Terms: computational paralinguistics, COVID-19, deep
learning, data augmentation, transfer learning

1. Introduction
Automated analysis of audio signals turned out to be a promis-
ing path for the screening of respiratory diseases [1, 2]. One
year after COVID-19 was officially declared a global pandemic,
there is a huge interest on improving such tools, allowing alter-
native forms of identification of suspicious cases of infection.

The Interspeech Computational Paralinguistics ChallengE
(ComParE) 2021 proposes two competitions related to detect-
ing COVID-19 from audio samples. Such samples represent
speech and cough from both healthy and infected speakers. The
COVID-19 Speech Sub-Challenge (CSS) offers 3.24 hours of
audio recordings containing speech samples, while the COVID-
19 Cough Sub-Challenge (CCS) provides 1.63 hours of cough
samples.

Our contribution to ComParE 2021 explores four architec-
tures based on convolutional neural networks aiming at detect-
ing COVID-19 in both CSS and CCS. In particular, we investi-
gate employing transfer learning, a well-established technique
to address data scarceness and adaptation between different
datasets [3], which has been used successfully in previous edi-
tions of ComParE [4, 5, 6, 7]. Thus our proposal studies transfer
learning from Pretrained Audio Neural Networks (PANNs) [8],
which are models trained on millions of audio samples. In addi-
tion, we explore three different data augmentation techniques.
The main contributions can be summarized as: (i) investigating
large-scale pretrained audio neural networks for the identifica-
tion of COVID-19; (ii) improving the generalization of deep
models via three data augmentation techniques, i.e. Mixup [9],
SpecAugment [10] and additive noise data augmentation [11].

2. Experimental Framework
First, we present the original datasets (section 2.1), noting that
there are insufficient data for a deep learning approach. Due
to this scarcity, we applied three techniques for data augmen-
tation: Noise Data Augmentation (section 2.2), SpecAugment
(section 2.3) and Mixup (section 2.4), in that order and combin-
ing the three methods. Finally, we also explore transfer learning
to address data scarcity (section 2.5).

2.1. Datasets

The datasets for the sub-challenges were extracted from the
COVID-19 Sound database [12, 13, 14]. Two groups were de-
fined, audio recordings from subjects with COVID-19 (patient
group) and from individuals not infected and therefore without
COVID-19 symptoms (control group).

Regarding the CSS, 893 audio clips were gathered from
366 speakers and different languages. There are 3.24 hours
of recordings, with duration varying between 3.6 and 30.1 sec-
onds. A total of 315 instances for training: 243 from the control
group and 72 for patient group. A development set is also avail-
able with 295 samples: 153 for control and 142 for patients.
The test set consists of 283 audios without public labels [14].

For the CCS, 929 cough audio instances were obtained from
397 speakers, resulting in 1.63 hours. The training set presents
215 and 71 audios for control and patients, respectively (286 in
total). The development set contains 231 audios (183 for control
and 48 for patients). The test set is composed of 208 unlabeled
audio clips [14].

Both the CSS and CCS audios are sampled at 16khz. It is
known the dataset contains multiple instances per speaker. In
addition, the training, development, and test sets do not share
speakers, thus they are speaker independent [14].

2.2. Noise data augmentation

We use the additive noise method which is popular in speech
processing [11]. For this purpose, we use the MUSAN cor-
pus [15], which is composed of three subsets: the noise subset,
which contains approximately 6 hours of noise, such as ambient
noise and dialtones; the music subset, which contains approx-
imately 42 hours of music and; the speech subset, containing
60 hours of human speech. We choose to use only the noise
subset, because it contains ambient noise that represents most
of the noise found in the datasets used in this paper. A noise
sample in every training step is chosen randomly and is added
to the original signal with a signal to noise ratio random varying
from 0 to 15dB, similar to the proposal of [16].

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-1798446



2.3. SpecAugment

SpecAugment [10] is an augmentation method originally pro-
posed for automatic speech recognition. It consists of masking
a log-mel spectrogram in the frequency and time domain [8].
The frequency masking is applied so that f consecutive mel
channels [f0, f0 + f ] are masked, where f is chosen from a
uniform distribution ranging from zero to a previously defined
value that indicates the maximum masking width. Finally, f0 is
chosen at random from [0, v−f ], where v is the number of mel
channels [10]. Masking in time domain is similar to frequency
masking, but along the time axis [8]. Similar to [8], we used
two masks in the frequency domain, with a maximum width of
eight mel channels and two masks in the time domain with a
maximum width of 64 frames.

2.4. Mixup

Mixup is a technique proposed by [9] to address overfitting and
sensitivity, using adversarial examples in deep neural networks.
The authors showed that this method improves the generaliza-
tion of deep models. In this method, at each training step, the
neural network is trained on a convex combination of two in-
puts and their corresponding labels [6], creating interpolations
between pairs of instances. Given two inputs xi and xj and their
corresponding classes yi and yj , their resulting Mixup (x̃, ỹ) is
defined in Eq. (1).

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj ,

(1)

The parameter λ in (1) is sampled for each pair (i, j) from
a Beta Distribution with parameters α, λ ∼ Beta(α, α), where
α ∈ (0,∞) [9]. We tested several possible Beta distributions
with α ∈ (0, 1), following guidelines of [6].

2.5. PANNs: AudioSet Pre-training

Transfer learning has shown to be a promising technique in sev-
eral tasks [17, 18, 19], such as computer vision [18], where pre-
trained models are used as feature extractors in images [20],
videos [21], and show to be useful when different datasets are
used as source and target tasks [3]. Finally, in the audio do-
main, transfer learning obtained from images is also used in au-
dio pattern recognition tasks [4]. The Pretrained Audio Neural
Networks (PANNs) [8] were proposed in order to support sev-
eral tasks such as audio tagging, acoustic scene classification,
music classification, speech emotion classification and sound
event detection.

PANNs used in this were trained in AudioSet [22], a dataset
containing approximately 1.9 million audio samples from 527
different classes. The authors explored different convolutional
topologies, such as VGG-like CNNs [23], MobileNets [24] and
ResNets [25]. As a result, the authors reported the best mod-
els, which were trained using as input log-mel spectrograms ex-
tracted from audios sampled at 32 kHz. The log-mel spectro-
gram was extracted using Fast Fourier Transform (FFT) [26],
with Hamming window 1024, hop length 320 and 1024 FFT
components. In addition, 64 mel filter banks were applied to
calculate the log-mel spectrogram. Overall, there is good em-
pirical evidence in favor of applying PANNs in audio pattern
recognition tasks [8], especially under limited availability of
training data. In this work we explore transfer learning from
three PANNs, namely CNN14, ResNet-38 and MobileNetv1.

3. Experiments
In order to build a classification model for COVID-19 detection,
four scenarios of data augmentation and neural network topolo-
gies were investigated. Firstly, we present the four experiments
in section 3.1. Then, detailed explanation regarding implemen-
tation is given in section 3.2. Finally, we describe the choice of
hyper-parameters used to build each model in section 3.3.

3.1. Proposed Experiments

Each experiment is based on a distinct neural network topol-
ogy and investigates the use of transfer learning and different
data augmentation approaches. To facilitate reproducibility, the
source code used in each experiment is available on GitHub1.
The experiments were carried out as follows:

• SpiraNet: uses the SPIRA-project topology proposed
specifically for detecting respiratory insufficiency in
speech audio samples represented as Mel Frequency
Cepstral Coefficients (MFCCs) [27]. The authors pro-
posed a convolutional neural network to identify respi-
ratory insufficiency in infected patients with COVID-
19 in a scenario of high environmental noise, achiev-
ing promising results (∼ 91% accuracy). In this experi-
ment, we use the same topology. Given the dataset dif-
ference, we searched for alternative strategies and fine-
tuned hyper-parameters, namely the kernel size, convo-
lutional dilatation, dropout, number of fully connected
layer neurons after the last convolutional layer (FC dim),
learning rate, weight decay and optimizer for each of the
dataset (CSS, CCS). We use MFCCs with the same pa-
rameters reported in [27]. For this experiment we do not
use noise data augmentation, Mixup and SpecAugment.

• CNN14: this experiment explores transfer learning from
the PANN CNN14 model [8]. We adjusted the follow-
ing original hyper-parameters in order to increase perfor-
mance in the CSS and CCS datasets: Mixup α, learning
rate, weight decay and optimizer for each of the datasets.
The input is composed of log-mel spectrograms. We
used the same parameters as the PANNs to extract the
log-mel spectrogram (described in Section 2.5), except
for the sampling rate, which was 16 kHz as in CSS and
CCS datasets. This models makes use of noise data aug-
mentation, Mixup and SpecAugment.

• ResNet-38: it is similar to CNN14, but exploring trans-
fer learning of the PANN ResNet-38 [8].

• MobileNetv1: also similar to CNN14, but exploring
transfer learning from PANN MobileNetv1 [8].

Each proposed experiment was executed using three differ-
ent configurations: simple holdout, windowed holdout and K-
fold cross validation. In all the cases, classifier ensembles were
created.

Regarding the simple holdout method, the official training
and development sets were used. This method was applied in
two stages. First, the hyper-parameters of the four neural net-
works were fine-tuned, one at a time, using a fixed random seed.
In the second phase, each experiment was carried out five times
using five different random seeds and an ensemble was created,
performing vote by sum of probabilities. We report only the
results for the second phase.

1https://github.com/Edresson/SPIRA-ComParE2021

447



For the windowed holdout, the procedure is similar to the
simple holdout, however we do not use the entire sample of
audios for training the networks. In this approach, training is
performed by selecting a random window from the original in-
put audio, the window size varies according to the dataset used
(detailed in Section 3.2). For development and test, the classi-
fiers received all possible windows from the audio considering
the hop size as window size (no overlapping) and their results
are combined in the voting process.

Finally, in the k-fold cross validation, we merged the train-
ing and development sets, using five folds to evaluate each ex-
periment. In this approach, each fold is used in the training of
ensembles rather than single models. Each ensemble is com-
posed of the five models (obtained with five different random
seeds initialization), yielding 25 models over all folds. The de-
velopment set results are obtained analysing each fold individ-
ually, by voting. In the test set, however, we perform a different
approach, inspired in [4], joining all 25 models to vote. This ap-
proach has the main advantage of covering more samples from
the training and development sets in order to decide the class.
As a drawback, the speaker independence assumption presented
in Section 2.1 may be compromised. Despite this, in [4] the
authors showed that this approach was effective in a scenario
without the independence of speakers between the train and de-
velopment set, turning out to be the winner of the ComParE
2020 Mask Sub-Challenge.

3.2. Experiment Implementation Details

In all experiments, our models are trained for 100 epochs. We
use the Binary Cross Entropy function [28] as loss for training
experiments based on Mixup. On the other hand, for experi-
ments that do not use Mixup, the loss function used was the
average of the Binary Cross Entropy calculated individually for
each class. Finally, in all experiments we choose the best check-
point using the average of the Binary Cross Entropy calculated
individually for each class in the development set.

The audio duration was set as the maximum duration on the
dataset for simple holdout and cross validation experiments in
order to standardize the audio duration, allowing network train-
ing and inference. Zero padding was used to adjust audios du-
ration when needed, injecting silence in the samples. For win-
dowed holdout, an audio window is chosen at random and the
window size is three seconds for the CSS dataset and two sec-
onds for the CCS dataset. These values were chosen because
they represent the rounded down value of the smallest audios in
each of the datasets.

Because the dataset has significant class imbalance, for the
k-fold cross validation, each fold is generated using propor-
tional stratified sampling. Batches, however, uses a different
method, either for cross validation or other holdout approaches.
Weighted random sampling [29] is used to build a batch con-
taining a balanced number of instances for each class. In this
technique, each instance receives a weight indicating its proba-
bility to be selected [30]. The inverse frequency of each class is
used to defined the weights of its instances.

All of our models were implemented using Pytorch 1.6.0
[29] and trained on an NVIDIA Titan RTX GPU with 24GB of
memory on a server with Intel (R) Core (TM) i9-10900 CPU
and 128GB of RAM. In addition, all models were trained with
a batch size of 16 and using Noam’s decay scheme [31] applied
to every 500 steps.

3.3. Models hyper-parameters

All the hyper-parameter values presented in this section were
manually adjusted, one at a time for both simple and windowed
holdout approaches. On the other hand, K-fold procedure uses
the same hyper-parameter values as in holdout. For this adjusts,
we used the development set loss.

Regarding CSS, the following hyper-parameters were cho-
sen in both holdout and k-fold evaluation. Adam [32] was used
for experiments 1, 3 and 4, while RAdamc [33] was used in
experiment 2. The initial learning rate were defined as 0.1 for
experiment 1 and 0.001 for the others. Weight decay of 0.01
was used in experiment 1 and 4, while 1e-05 was used for the
others. Mixup α = 1 were used in experiment 2, 3 and 4. Ex-
periment 1 had other parameters adjusted, namely in FC dim
100, dropout rate 0.7, convolutional dilatation 2× 1 and kernel
size 5×1. The remaining experiments use transfer learning and
these hyper-parameters are kept at the default values.

In the windowed holdout approach, we used Adam opti-
mizer for experiment 3 and AdamW optimizer [34] for the oth-
ers. The learning rate was set to 0.01 in experiment 1 and 0.001
for the others. Experiments 1 and 4 had weight decay of 0.0001,
experiment 2 had the value set to 0.001 and experiment 3 used
no weight decay. Mixup α = 0.8, 0.3 and 0.9 where used in
experiments 2, 3 and 4, respectively. Experiment 1 also had its
hyper-parameters tuned with FC dim equal to 75, dropout rate
of 0.7, convolutional dilatation of 2×1 and kernel sizes of 7×1,
5× 1, 3× 1 and 2× 1 for each respectively layer.

Regarding CCS, the following same hyper-parameters were
used for simple holdout and k-fold cross validation approaches.
The choice of optimizers is the same for CSS, except experi-
ment 2, which used AdamW. The initial learning rate were de-
fined 0.01 for experiment 4 and 0.001 for the others. Weight
decays of 0.1, 0.01, 1e-05 and 0 were used for experiments 1
to 4, respectively. Mixup α 0.9, 1.0 and 0.7 were used in ex-
periment 2, 3 and 4. As in the CSS analysis, experiment 1 had
some parameters adjusted, namely, FC dim 125, dropout rate
0.7, convolutional dilatation 2×1 and kernel sizes 2×1, 2×1,
2× 1 and 5× 1.

In the windowed holdout approach, we used Adam opti-
mizer in all experiments. The learning rate was set to 0.01 in
experiment 4 and 0.001 for the others. Experiments 1 and 4
had weight decay of 0.0001, experiment 2 had the value set to
0.001 and experiment 3 used no weight decay. Mixup α of 0.8,
0.3 and 0.9 where used in experiments 2, 3 and 4, respectively.
Experiment 1 also had its hyper-parameters tuned, FC dim 75,
dropout rate 0.7, convolutional dilatation 2× 1 and kernel sizes
7×1, 5×1, 3×1 and 2×1. Weight decays were 0.01, 0.001, 1e-
05 and 0 and experiments 1 to 4, respectively. Mixup α = 0.4,
0.1, 0.4 were used for experiments 2 to 4. Finally, experiment
1 had extra hyper-parameters adjusted was FC dim 75, dropout
rate 0.7, convolutional dilatation 2x1 and as kernel sizes 7× 1,
5× 1, 3× 1 and 2× 1.

4. Results and Discussion
Tables 1 and 2 presents the obtained results for CSS and CCS,
respectively. For each approach, we selected the experiment
with highest development UAR and used it for test evaluation.
We also build two ensembles of ensembles (sum of probabil-
ities), one including all experiments and other with the three
highest development UARs.

Regarding CSS, CNN14 provided consistent results over all
sampling methods for the development set, resulting in UARs

448



Table 1: CSS experiments

Exp. Train Devel Test
F1 UAR F1 UAR UAR

Baseline [14] - - - 57.90 72.10
Simple Holdout

SpiraNet 91.50 96.34 70.49 73.57
CNN14 92.61 96.27 74.13 76.94

ResNet-38 95.77 96.81 76.40 78.39 70.30
MobileNet 97.95 99.38 73.80 75.73

Windowed Holdout
SpiraNet 65.83 79.39 49.13 59.28
CNN14 90.32 95.93 76.25 76.08 65.20

ResNet-38 84.56 90.86 72.65 75.00
MobileNet 83.22 89.96 75.26 75.93

Cross K-fold
SpiraNet (84.57) (88.38) (76.43) (81.80)
CNN14 (99.82) (99.90) (87.37) (90.59) 68.90

ResNet-38 (99.65) (99.81) (86.34) (89.75)
MobileNet (92.83) (95.18) (79.06) (83.99)

Heterogeneous Ensambles
Baseline [14] - - - - 71.10

Top three - - - - 69.70
All Models - - - - 69.40

Table 2: CCS experiments

Exp. Train Devel Test
F1 UAR F1 UAR UAR

Baseline [14] - - - 64.7 72.90
Simple Holdout

SpiraNet 57.65 74.83 41.21 62.73
CNN14 91.61 96.97 51.42 69.92 75.90

ResNet-38 85.02 94.18 47.76 68.57
MobileNet 72.04 83.40 43.24 64.75

Windowed Holdout
SpiraNet 64.96 77.77 38.51 60.41
CNN14 57.89 75.31 43.42 65.26

ResNet-38 75.44 86.69 45.76 66.37
MobileNet 59.84 72.57 50.00 67.77 68.90

Cross K-fold
SpiraNet (86.10) (94.29) (55.95) (72.17)
CNN14 (99.79) (99.93) (76.79) (86.60) 69.60

ResNet-38 (99.79) (99.93) (70.75) (82.48)
MobileNet (71.57) (85.21) (64.13) (79.22)

Heterogeneous Ensambles
Baseline [14] - - - - 73.90

Top three - - - - 71.20
All Models - - - - 70.60

superior to 76%. In fact, this model lead to highest UARs
in both windowed holdout and k-fold cross validation. The
best UAR for simple holdout were obtained by the ResNet-38
model.

In [14], the authors reached a maximum UAR of 70.50%
in the development set and this same model reached the second
best result in the test with a UAR of 68.70%. Compared to this
model, our best development model has a development UAR
approximately 8% higher and a test UAR and 2% higher. How-
ever, a baseline with inferior development UAR leaded to the
highest test UAR. Our model is approximately 2% inferior to

this baseline. Additionally, our two heterogeneous ensembles
had a similar result, but both failed to overcome the baseline in
the test set.

The best model of the baseline in the test set was the second
worst considering development set and jumped from 57.90% to
72.10% from one set to the other. This difference of approxi-
mately 14% may indicate that the development set is not a good
representative of the test set. As it is a multi-language dataset,
the unbalance of languages in the validation set can compromise
learning, this information is unclear.

In CCS experiments, CNN14 also showed consistent re-
sults, presenting the highest UARs for simple holdout and k-
fold cross validation sampling approaches and MobileNet pre-
sented the higher development UAR for the windowed sampling
method.

In [14] the authors reached a maximum UAR of 66.40%
in the development set and this same model reached a UAR
of 67.60% in the test. Our best model in development shows
superior results of approximately 3% when compared to the best
model in the baseline development set.

In the test set, our best experiment using the simple hold-
out approach and the CNN14 architecture reached a UAR of
75.90%, which was 2% above the ensemble used as a baseline
in the competition. In addition, we see baselines with superior
performances in the test set compared to the performance in the
development set. In [14], the best model was more than 8% bet-
ter in test than in development. The same occurred with our best
model it was approximately 6% better in test set. Finally, our
two heterogeneous ensembles had results close to each other,
however they did not surpass our best homogeneous ensemble
performance.

The sampling methods showed a tendency to better re-
sults for simple holdout, followed by cross validation and win-
dowed holdout, in this order. Despite cross validation presented
promising results in related work [4], it was not able to surpass
simple-holdout. One hypothesis is that this dataset is smaller to
the one used in [4]. It is noticeable that k-fold was still superior
to windowed holdout even without specific fine tunning as in
the other two approaches.

5. Conclusions and future work
This paper presented a contribution for the CSS and CCS com-
petitions by tackling the challenges using deep learning based
models. Because such methods are data-hungry, in contrast
with the size of the datasets available for the challenge, we
explored both transfer learning and several data augmentation
methods, in attempt to obtain competitive results. In this sense,
we also explored instance sampling methods. Although our
models could not overcome the baseline results for CSS, they
were able to surpass them in CCS by 2%.

6. Acknowledgements
This work was supported by Fapesp project 2020/06443-5
(SPIRA). This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001. Marcelo Finger was partly sup-
ported by Fapesp projects 2019/07665-4 and 2014/12236-1 and
CNPq grant PQ 303609/2018-4. We also gratefully acknowl-
edge the support of NVIDIA Corporation with the donation of
the GPU used in part of the experiments presented in this re-
search.

449



7. References
[1] G. Chambres, P. Hanna, and M. Desainte-Catherine, “Automatic

detection of patient with respiratory diseases using lung sound
analysis,” in 2018 International Conference on Content-Based
Multimedia Indexing (CBMI). IEEE, 2018, pp. 1–6.

[2] D. Perna and A. Tagarelli, “Deep auscultation: Predicting res-
piratory anomalies and diseases via recurrent neural networks,”
in 2019 IEEE 32nd International Symposium on Computer-Based
Medical Systems (CBMS). IEEE, 2019, pp. 50–55.

[3] F. P. Dos Santos, C. Zor, J. Kittler, and M. A. Ponti, “Learning
image features with fewer labels using a semi-supervised deep
convolutional network,” Neural Networks, vol. 132, pp. 131–143,
2020.

[4] J. Szep and S. Hariri, “Paralinguistic classification of mask
wearing by image classifiers and fusion,” Proceedings INTER-
SPEECH. Shanghai, China: ISCA, pp. 2087–2091, 2020.

[5] M. Markitantov, D. Dresvyanskiy, D. Mamontov, H. Kaya,
W. Minker, and A. Karpov, “Ensembling end-to-end deep models
for computational paralinguistics tasks: Compare 2020 mask and
breathing sub-challenges,” INTERSPEECH, Shanghai, China,
2020.

[6] T. Koike, K. Qian, B. W. Schuller, and Y. Yamamoto, “Learn-
ing higher representations from pre-trained deep models with data
augmentation for the compare 2020 challenge mask task,” Pro-
ceedings INTERSPEECH. Shanghai, China: ISCA, pp. 2047–
2051, 2020.

[7] S.-L. Yeh, G.-Y. Chao, B.-H. Su, Y.-L. Huang, M.-H. Lin, Y.-C.
Tsai, Y.-W. Tai, Z.-C. Lu, C.-Y. Chen, T.-M. Tai et al., “Using
attention networks and adversarial augmentation for styrian di-
alect continuous sleepiness and baby sound recognition.” in IN-
TERSPEECH, 2019, pp. 2398–2402.

[8] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumb-
ley, “Panns: Large-scale pretrained audio neural networks for
audio pattern recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 2880–2894, 2020.

[9] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[10] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method
for automatic speech recognition,” Proceedings INTERSPEECH
2019, pp. 2613–2617, 2019.

[11] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[12] C. Brown, J. Chauhan, A. Grammenos, J. Han, A. Hasthanasom-
bat, D. Spathis, T. Xia, P. Cicuta, and C. Mascolo, “Exploring
automatic diagnosis of covid-19 from crowdsourced respiratory
sound data,” in Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2020,
pp. 3474–3484.

[13] J. Han, C. Brown, J. Chauhan, A. Grammenos, A. Hasthanasom-
bat, D. Spathis, T. Xia, P. Cicuta, and C. Mascolo, “Exploring au-
tomatic covid-19 diagnosis via voice and symptoms from crowd-
sourced data,” arXiv preprint arXiv:2102.05225, 2021.

[14] B. W. Schuller, A. Batliner, C. Bergler, C. Mascolo, J. Han,
I. Lefter, H. Kaya, S. Amiriparian, A. Baird, L. Stappen, S. Ottl,
M. Gerczuk, P. Tzirakis, C. Brown, J. Chauhan, A. Grammenos,
A. Hasthanasombat, D. Spathis, T. Xia, P. Cicuta, M. R. Leon J.
J. Zwerts, J. Treep, and C. Kaandorp, “The INTERSPEECH 2021
Computational Paralinguistics Challenge: COVID-19 Cough,
COVID-19 Speech, Escalation & Primates,” in Proceedings IN-
TERSPEECH 2021, 22nd Annual Conference of the International
Speech Communication Association. Brno, Czechia: ISCA,
September 2021, to appear.

[15] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[16] H. S. Heo, B.-J. Lee, J. Huh, and J. S. Chung, “Clova baseline sys-
tem for the voxceleb speaker recognition challenge 2020,” arXiv
preprint arXiv:2009.14153, 2020.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[18] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models
transfer better?” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 2661–2671.

[19] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” arXiv preprint arXiv:2006.11477, 2020.

[20] M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet
good for transfer learning?” arXiv preprint arXiv:1608.08614,
2016.

[21] F. P. dos Santos, L. S. Ribeiro, and M. A. Ponti, “Generalization
of feature embeddings transferred from different video anomaly
detection domains,” Journal of Visual Communication and Image
Representation, vol. 60, pp. 407–416, 2019.

[22] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology
and human-labeled dataset for audio events,” in 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 776–780.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[26] E. O. Brigham and R. Morrow, “The fast fourier transform,” IEEE
spectrum, vol. 4, no. 12, pp. 63–70, 1967.

[27] E. Casanova, L. Gris, A. Camargo, D. Silva, M. Gazzola,
E. Sabino, A. Levin, A. Candido Jr, S. Aluisio, and M. Finger,
“Deep learning against covid-19: Respiratory insufficiency detec-
tion in brazilian portuguese speech,” in Findings of the Associa-
tion for Computational Linguistics: ACL 2021. ACL, Aug. 2021,
accepted for publication.

[28] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning. MIT press Cambridge, 2016, vol. 1, no. 2.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” Ad-
vances in neural information processing systems, vol. 32, pp.
8026–8037, 2019.

[30] T. Emara, H. M. Afify, F. H. Ismail, and A. E. Hassanien, “A
modified inception-v4 for imbalanced skin cancer classification
dataset,” in 2019 14th International Conference on Computer En-
gineering and Systems (ICCES). IEEE, 2019, pp. 28–33.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, 2017, pp.
5998–6008.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[33] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han,
“On the variance of the adaptive learning rate and beyond,” arXiv
preprint arXiv:1908.03265, 2019.

[34] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” arXiv preprint arXiv:1711.05101, 2017.

450


